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Speaker Modeling

Speaker modeling aims to capture information related to the identity of the speaker while
neglecting other attributes.
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Speaker modeling in different tasks
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Applications of Speaker Modeling
Embedding Extraction for speaker verification

Speaker Verification: My voice is my password

Figure adapted from Hung-yi Lee’s DLHLP20 slides1

1https://speech.ee.ntu.edu.tw/~tlkagk/courses/DLHLP20/
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Applications of Speaker Modeling
Reference/Cue modeling for Target speech extraction

Target Speech Extraction: I only hear your voice
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Applications of Speaker Modeling
Target voice identifier for Text-to-speech

Speaker modeling for the target voice.
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Applications of Speaker Modeling
Embedding clustering based Speaker diarization

Speaker diarization: Who Spoke When?
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Speaker Modeling
GMM-UMB & GMM-Supervector

Figure: GMM-UBMa model for speaker modeling

aZheng, Zhang, and Xu, “Text-independent speaker identification
using gmm-ubm and frame level likelihood normalization”.

Gaussian Mixture Model (GMM)a
▶ p(x) =

∑K
1 ckN (x | µk,Σk) s.t.

∑K
1 ck = 1

▶ Any distribution can be approximated by a weighted linear
combination of several Gaussian distributions

▶ When using GMM to model the speaker’s acoustic features,
the number of Gaussians can be considered as the types of
sounds produced.

Universal Background Model (UBM)
▶ Usually, a person’s registered voice is limited (a few seconds),

making it difficult to train a GMM with this data.
▶ UBM on a large-scale dataset can be trained first and then

adapted to a specific speaker’s data.

GMM-Supervector
▶ Concatenate the mean vector of each gaussian to represent

the speaker

aReynolds et al., “Gaussian mixture models.”
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Speaker Modeling
i-vector

Figure: Block diagram of speaker recognition
system based on i-vector

Drawbacks of GMM-Supervector
▶ Supervectors are extremely high-dimensional (often tens of

thousands of dimensions), making them computationally
challenging

Decompose Supervector to low-dimensional
i-vectora:

M(s) = m+ Tw(s)
▶ M(s): GMM-Supervector for speaker s

▶ m: speaker-independent supervector
▶ T : total variability matrix, capturing all sources of variability

in the voice samples (both speaker-related and
channel-related)

▶ w(s): i-vector for speaker s

aDehak et al., “Front-end factor analysis for speaker verification”.
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Speaker Modeling
d-vector

Figure: Architecture of d-vector

d-vectora stands out as
▶ Very early attempts at applying deep neural networks to

speaker information modeling
▶ Demonstrated a good complementarity with i-vector

aVariani et al., “Deep neural networks for small footprint
text-dependent speaker verification”.
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Speaker Modeling
x-vector

Table: Architecture of TDNN based speaker
embedding extractor, T denotes the sequence
length, N is the number of speakers

Layer Layer context Input × output

frame1 [t− 2, t+ 2] 200 × 512
frame2 {t− 2, t, t+ 2} 1536 × 512
frame3 {t− 3, t, t+ 3} 1536 × 512
frame4 {t} 512 × 512
frame5 {t} 512 × 1500

stats pooling [0, T ] 1500 × 3000
segment1 {0} 3000 × 512
segment2 {0} 512 × 512
projection {0} 512 × N

x-vectora stands out as
▶ The first deep speaker embedding that beats traditional

methods on well-recognized datasets (NIST SRE)
▶ The first work that introduces segment-level optimization

▶ Powerful variant ECAPA-TDNNb

aSnyder et al., “X-vectors: Robust dnn embeddings for speaker
recognition”.

bDesplanques, Thienpondt, and Demuynck, “Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in tdnn
based speaker verification”.
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Speaker Modeling
r-vector

Table: Architecture of ResNet34 based speaker
embedding extractor, T denotes the sequence
length, N is the number of speakers

Layer name Structure Output

Input – 40 × T × 1
Conv2D-1 3 × 3, Stride 1 40 × T × 32

ResNetBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 , Stride 1 40× T × 32

ResNetBlock-2
[
3× 3, 64
3× 3, 64

]
× 4, Stride 2 20× T

2 × 64

ResNetBlock-3
[
3× 3, 128
3× 3, 128

]
× 6, Stride 2 10× T

4 × 128

ResNetBlock-4
[
3× 3, 256
3× 3, 256

]
× 3, Stride 2 5× T

8 × 256

StatsPooling – 10× 256
Flatten – 2560

Dense – 256
Projection – N

r-vectora stands out as
▶ The winner system of both tracks of VoxSRC 2019.
▶ Utilized as the embeddings in the winner systems of all 4

tracks in DIHARD 2019.

aZeinali et al., “But system description to voxceleb speaker
recognition challenge 2019”.
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Speaker Modeling
Data: From well-labeled recordings to unlabeled in-the-wild massive data

Labeled data:
▶ Labeling the data is costly
▶ Automatically collected data using speaker information, like voxceleb, suffering from

the privacy issue
▶ The voxceleb dataset is no longer accessible from the official website

Unlabeled data:
▶ Easily to obtain
▶ Covers a wider range of real data
▶ No privacy issue

Training paradigm: Supervised to Unsupervised/Semi-supervised/Self-supervised
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Speaker Representation Learning: Trends
Model: From shallow to deep

▶ GMM, i-vector can be regarded as single-layer MLP
▶ d-vector, j-vector, x-vector: less than 10 layers.
▶ ResNet based models (common setup: 34 layers, extended to 293 layers or even

500+ layers in challenges)
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Speaker Representation Learning: Trends
Modality: From uni-modal to multi-modal

▶ Pure audio modality
▶ Audio-visual speaker embedding
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Speaker Representation Learning: Trends
Paradigm: Training from scratch to leveraging pretrained models

▶ Training speaker discrinative models from scratch
▶ Leveraging large pretrained speech models such as WavLM
▶ Semi-supervised: Finetuning on the DINO models
▶ Semi-supervised: Iteratively clustering and supervised finetuning
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Speaker Representation Learning: Trends
Task: From single task to cross-task

▶ Pretrained embeddings to be used in different tasks
▶ Explict joint optimization with the specific task
▶ Implict speaker modeling in related tasks
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Discriminative Loss Functions
Philosophy

Optimize the neural network towards the speaker classification direction.
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Discriminative speaker Representation learning
Comparison with ASR training

Compared with the classic phoneme classification based ASR system:

ASR: Close-set problem, the classes are the pre-defined phonemes/senones in the
inference stage

Speaker: Open-set problem, usually we assume the speakers in the inference stage are
not present in the training set
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Discriminative Loss Functions

Classification based loss functions provide discriminative supervision signals, while
margin-based ones23 are supervior to the standard softmax-based one4.

Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi
xi+byi∑c

j=1 e
WT

j xi+bj
(1)

LAAM-Softmax = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

Z
(2)

2Huang, Wang, and Yu, “Angular Softmax for Short-Duration Text-independent Speaker Verification.”
3Cai, Chen, and Li, “Exploring the encoding layer and loss function in end-to-end speaker and language recognition system”.
4Xiang et al., “Margin matters: Towards more discriminative deep neural network embeddings for speaker recognition”.
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Discriminative speaker Representation learning
The essence of learning

The margin-based loss only enlarges the
inter-speaker distance.

Figure: The decision boundary change after
adding the margin-based loss.

An extra center lossabc can be applied to
minimize the within-class variance.

L = LAAM-Softmax + LC

= LAAM-Softmax +
1

2

N∑
i=1

∥xi − cyi∥
2

aCai, Chen, and Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system”.

bLi et al., “Deep Discriminative Embeddings for Duration Robust
Speaker Verification.”

cWang et al., “Discriminative neural embedding learning for
short-duration text-independent speaker verification”.
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Self-supervised based Speaker Represenetation Learning

▶ Leveraging large pre-text pretraining models.
▶ Self-supervised Pretrained Speech Models
▶ ASR Model Initialization
▶ Efficient Finetuning

▶ Self-supervised Learning Approach
▶ SimCLR/MoCo/DINO
▶ Stage-wise Iterative Training
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Self-supervised based Speaker Represenetation Learning
Finetuning Approach

▶ Self-Supervised Pretrained Speech Models
▶ Wav2Veca

▶ HuBERTb

▶ WavLMc

▶ UniSpeechd

aBaevski et al., “wav2vec 2.0: A framework for self-supervised learning of
speech representations”.

bHsu et al., “Hubert: Self-supervised speech representation learning by masked
prediction of hidden units”.

cChen et al., “Wavlm: Large-scale self-supervised pre-training for full stack
speech processing”.

dChen et al., “Unispeech-sat: Universal speech representation learning with
speaker aware pre-training”. Figure: Model Architecture of WavLM
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Self-supervised based Speaker Represenetation Learning
Finetuning Approach

Finetuning SSL Speech Models on
Speaker Verification Taska

▶ Replace Fbank with representation
from pre-trained models.

▶ Learnable weighted sum

aChen et al., “Large-scale self-supervised speech representation
learning for automatic speaker verification”.

Figure: Leverage Representations from
Pre-trained Model
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Self-supervised based Speaker Represenetation Learning
Finetuning Approach

Efficient finetuning Self-supervised Model
with adapters on Speaker Verificationa

▶ Frozen the large pretrained model
▶ Use adapters for efficient finetuning on

speaker tasks.

aPeng et al., “Parameter-efficient transfer learning of pre-trained
Transformer models for speaker verification using adapters”.

Figure: Schematic diagram of efficient finetuning
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Self-supervised based Speaker Represenetation Learning
Finetuning Approach

Finetuning ASR Models on Speaker
Verification Taskab

▶ Pre-train model with ASR dataset.
▶ Initialize for speaker task training.

aLiao et al., “Towards a unified conformer structure: from asr to
asv task”.

bCai et al., “Pretraining Conformer with ASR for Speaker
Verification”.

Figure: Schematic diagram of ASR transferring
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Self-supervised based Speaker Represenetation Learning
Self-supervised Learning Approach

Assumption of self-supervised learning on
Speaker Verification Task.a

▶ Segments from same utterances belong
to same speaker.

▶ Segments from different utterances
belong to different speakers.

aHuh et al., “Augmentation adversarial training for self-supervised
speaker recognition”. Figure: Schematic diagram of assumption.
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Self-supervised based Speaker Represenetation Learning
Metric based Loss Functions

Metric learning based loss functions provide contrastive supervision signals, such as
Triplet, Prototypical, GE2E5and Angular Prototypical6.

LTriplet =
1

N

N∑
j=1

max(0, ∥xj,0 − xj,1∥22 − ∥xj,0 − xk ̸=j,1∥22 +m) (3)

LPrototypical = − 1

N

N∑
j=1

log
eSj,j∑N
k=1 e

Sj,k
, where Sj,k = ∥xj,M − ck∥22 (4)

5Wan et al., “Generalized end-to-end loss for speaker verification”.
6Chung et al., “In defence of metric learning for speaker recognition”.
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Self-supervised based Speaker Represenetation Learning
SimCLR

Based on SimCLRa framework, adapt to
speaker taskb

▶ Crop two segments from utterance and
construct the positive and negative
pairs.

▶ Use metric loss to attract the positive
pairs and repel the negative pairs.

aChen et al., “A simple framework for contrastive learning of
visual representations”.

bZhang, Zou, and Wang, “Contrastive self-supervised learning for
text-independent speaker verification”. Figure: Schematic diagram of simclr on speaker

task.
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Self-supervised based Speaker Represenetation Learning
DINO

Based on DINOa framework, adapt to
speaker taskbc

▶ Crop several segments from one
utterance and only construct the
positive pairs.

▶ Use cross entropy loss to attract the
positive pairs.

aCaron et al., “Emerging properties in self-supervised vision
transformers”.

bHan, Chen, and Qian, “Self-supervised speaker verification using
dynamic loss-gate and label correction”.

cChen et al., “A comprehensive study on self-supervised
distillation for speaker representation learning”.

Figure: Schematic diagram of DINO on speaker
task.
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Self-supervised based Speaker Represenetation Learning
Stage-wise Iterative Training

Two stages based iterative
frameworkabc.

▶ I: Contrastive training
▶ II: Iterative clustering

and representation
learning.

aCai, Wang, and Li, “An iterative
framework for self-supervised deep
speaker representation learning”.

bHan, Chen, and Qian,
“Self-Supervised Learning with
Cluster-Aware-DINO for
High-Performance Robust Speaker
Verification”.

cTao et al., “Self-supervised speaker
recognition with loss-gated learning”.

Figure: Schematic diagram of iterative framework for SSL speaker
verification.
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The complementation between audio and visual modality

Figure: The speaker similarity based on the audio or visual information7

▶ The upper part shows the speaker’s similarity to the same person
▶ The bottom part shows the speaker’s similarity between different persons
7Qian, Chen, and Wang, “Audio-visual deep neural network for robust person verification”.
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Audio-Visual Information Fusion

Figure: Audio-visual information fusion at different levelsa

aQian, Chen, and Wang, “Audio-visual deep neural network for robust person
verification”.

▶ Embedding-level fusion
performs better than low-level
fusion

▶ The attention mechanism in
embedding-level fusion makes
it more noise-robust than
score-level fusion
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Multi-Modal Knowledge Distillation
From audio-visual system to single-modality system

Figure: Knowledge distillation from audio-visual system to single-modality system8

8Zhang, Chen, and Qian, “Knowledge Distillation from Multi-Modality to Single-Modality for Person Verification”.
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Multi-Modal Knowledge Distillation
From visual system to audio system

Figure: Knowledge distillation from visual system to audio system9

9Jin et al., “Cross-modal distillation for speaker recognition”.
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Model Efficiency

In speaker representation learning, we mainly optimize the efficiency of the model from
two perspectives: computational efficiency and memory efficiency

▶ Computation Efficiency
▶ Knowledge Distillation
▶ Network Quantization
▶ Efficient Architecture Design

▶ Memory Efficiency
▶ Reversible Neural Networks
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Model Computation Efficiency
Knowledge Distillation

Knowledge Distillation on Speaker
Verification Task

▶ Knowledge distillation from teacher
model to student modela

▶ Self-knowledge distillation via feature
enhancementb

▶ Knowledge distillation from
multi-modality to single-modalityc

aWang et al., “Knowledge Distillation for Small Foot-print Deep
Speaker Embedding”.

bLiu et al., “Self-Knowledge Distillation via Feature Enhancement
for Speaker Verification”.

cZhang, Chen, and Qian, “Knowledge Distillation from
Multi-Modality to Single-Modality for Person Verification”.

Figure: Schematic diagram of self-knowledge
distillation via feature enhancement
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Model Computation Efficiency
Quantization

Quantization achieves model compression
by reducing the parameter precision

▶ Binary Neural Networka

▶ Linear and PoT(Power of Two)
quantizationb

▶ K-Means based quantizationc

▶ Static and adaptive quantizer for binary
quantizationd

aZhu, Qin, and Li, “Binary Neural Network for Speaker
Verification”.

bLiu et al., “Self-Knowledge Distillation via Feature Enhancement
for Speaker Verification”.

cWang et al., “Adaptive Neural Network Quantization For
Lightweight Speaker Verification”.

dLiu, Wang, and Qian, “Extremely Low Bit Quantization for
Mobile Speaker Verification Systems Under 1MB Memory”.

Figure: The overview of static and adaptive
binary quantization
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Model Computation Efficiency
Effeicient Architecture Design

Effeicient Architecture Design on
Speaker Verification Task

▶ Depth-First Neural Architecture with
Attentive Feature Fusiona

▶ CS-CTCSCONV1Db(Channel Split
Time-Channel-Time Separable
1-dimensional Convolution)

▶ Asymmetric Enroll-Verify
Structure(ECAPA-TDNNLitec)

aLiu, Chen, and Qian, “Depth-First Neural Architecture With
Attentive Feature Fusion for Efficient Speaker Verification”.

bCai et al., “CS-CTCSCONV1D: Small footprint speaker
verification with channel split time-channel-time separable
1-dimensional convolution”.

cLi et al., “Towards Lightweight Applications: Asymmetric
Enroll-Verify Structure for Speaker Verification”.

Figure: Schematic of CS-CTCSCONV1D
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Model Computation Efficiency
Asymmetric Enroll-Verify Structure

Figure: The training process of the asymmetric
structure. Frame-wise input features are fed into
the large-scale model and the small-scale model,
respectively Figure: Schematic of ECAPA-TDNNLite
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Model Computation Efficiency
Performance of Computational Efficient Models

Table: The experiment results of compressed/quantized ResNet34 and other full-precision
compact architectures.

Model Size
(MB)

Bit-width
(bit)

Vox1-O
EER(%)

KMQAT-ResNet3410 3.45 4 0.957
PoT-ResNet3411 3.45 4 1.09
TWN-ResNet3412(our impl.) 1.80 2 1.473

b-vector(adaptive)13 0.97 1 1.72
ResNet34(binary)14 0.66 1 5.355
CS-CTCSConv1d 0.96 32 2.62
ECAPA-TDNNLite 1.2 32 3.07

10Wang et al., “Adaptive Neural Network Quantization For Lightweight Speaker Verification”.
11Li et al., “Model Compression for DNN-based Speaker Verification Using Weight Quantization”.
12Li, Zhang, and Liu, “Ternary weight networks”.
13Liu, Wang, and Qian, “Extremely Low Bit Quantization for Mobile Speaker Verification Systems Under 1MB Memory”.
14Zhu, Qin, and Li, “Binary Neural Network for Speaker Verification”.
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Model Memory Efficiency
Training Memory Efficiency

Reversible Neural Networksa (RevNets)
alleviate the need to store activations in
memory during back-propagation.
Consequently, RevNets require nearly
constant memory costs as the network depth
increases.

▶ Partially reversible networks
▶ Fully reversible networks

aLiu and Qian, “Reversible Neural Networks for Memory-Efficient
Speaker Verification”.

Figure: Comparison between non-reversible
operator (a) and reversible operator (b)

Shuai & Bing NCMMSC: Speaker Representation Learning 47 / 107



Model Memory Efficiency
GPU Memory Usage vs. Parameter Number

Figure: GPU Memory Usage vs. Parameter Number
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Model Computation Efficiency

Other Work on Model Efficiency
▶ Thin-ResNet15

▶ Fast-ResNet16

▶ ADMM17

▶ Small Footprint Text-Independent Speaker Verification18

15Cai, Chen, and Li, “Exploring the encoding layer and loss function in end-to-end speaker and language recognition system”.
16Chung et al., “In Defence of Metric Learning for Speaker Recognition”.
17Xu et al., “Mixed Precision Low-Bit Quantization of Neural Network Language Models for Speech Recognition”.
18Balian et al., “Small footprint text-independent speaker verification for embedded systems”.
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Robustness in Speaker Representation Learning

Shuai & Bing NCMMSC: Speaker Representation Learning 50 / 107



Model Robustness
Robustness to devices

The recording environment also introduces variability in modeling speaker identity,
influenced by factors like the recording device and microphone distance. To enhance
model robustness across different devices, various domain adaptation methods are applied
in speaker recognition, including
▶ Discrepancy-based alignment
▶ Adversarial learning
▶ Domain-specific adapter
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Model Robustness to Device
Discrepancy-based alignment

Discrepancy-based alignment aims to minimize domain discrepancy in a latent feature
space and facilitate learning domain-invariant representations. To achieve this goal,
choosing a proper divergence measure is at the core of these methods. Widely used
measures include MMD19, correlation alignment (CORAL)20, etc.

Lmmd ≜ sup
ϕ∈Φ

(ES [ϕ (S)]− ET [ϕ (T )]) (5)

19Li, Han, and Song, “CDMA: Cross-Domain Distance Metric Adaptation for Speaker Verification”.
20Li, Zhang, and Chen, “The coral++ algorithm for unsupervised domain adaptation of speaker recognition”.
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Model Robustness to Device
Adversarial learning

Figure: Structure of channel-level adversarial
learninga

aChen et al., “Channel invariant speaker embedding learning with
joint multi-task and adversarial training”.

Adversarial learning employs a domain
classifier to eliminate discriminative domain
information from features. Min-max
optimization in domain-adversarial training
minimizes the domain gap and enforces
domain-invariant feature extractiona.

aChen et al., “Channel invariant speaker embedding learning with
joint multi-task and adversarial training”.
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Model Robustness to Device
Domain-specific adapter

Instead of directly aligning domains with discrepancy measures, incorporating additional
modules like domain-specific adapters helps capture and mitigate domain variances,
resulting in domain-invariant embeddings.

Figure: Framework with domain-specific adapters21

21Huang et al., “Enhancing Cross-Domain Speaker Verification through Multi-Level Domain Adapters”.
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Model Robustness to language mismatch
Language mismatch between datasets

.
Observation: In real-world scenarios, speaker verification systems may degrade
when training on one language and test it on another.
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Model Robustness to language mismatch
Language mismatch between enroll / test

Over 40% of the world’s population is bilingual, this mismatch happens when the
languages used are different for enrollment and test.

Figure: Structure of language-mismatch
adversarial learning

Adversarial learning employs a language
classifier to eliminate discriminative language
information from features. Min-max
optimization in domain-adversarial training
minimizes the language gap and enforces
language-invariant feature extractionab.

aRohdin et al., “Speaker verification using end-to-end adversarial
language adaptation”.

bXia, Huang, and Hansen, “Cross-lingual text-independent
speaker verification using unsupervised adversarial discriminative
domain adaptation”.
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Robustness
Robustness to text mismatch

Besides the speaker information, the text or content is the most crucial information
conveyed through speech.

For text-independent speaker tasks, we only
need speaker information

Enroll: Hey Siri; Test: whatever to say

For text-dependent speaker tasks, we also
need content information

Enroll: Hey Siri; Test: Hey Siri
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Text Robustness
Utilization of content (Phoneme) information in speaker modeling

The representation of Content Information
▶ Phoneme index
▶ Phoneme posteriors predicted by ASR
▶ Hidden layer outputs from the ASR Model
▶ Phrase number (Fix-phrase datasets)
▶ Normalized phoneme distribution
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Text Robustness
multi-task learning in the d-vector framework22

▶ Text-dependent task
▶ Multi-task at the frame-level
▶ Performance improved

Explicitly modeling phonetic information
helps the text-dependent speaker verification
task, which is intuitive.

22Liu, Yuan, et al. "Deep feature for text-dependent speaker verification." Speech Communication 73 (2015): 1-13.
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Text Robustness
multi-task learning in the x-vector framework23

▶ Text-independent task
▶ Multi-task at the frame-level
▶ Performance improved!

23Liu, Yi, et al. "Speaker Embedding Extraction with Phonetic Information." Proc. Interspeech 2018 (2018): 2247-2251.
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Text Robustness
Speaker invariant training for ASR 24

▶ Acoustic modelling
▶ Adversarial training

suppressing the speaker effect
▶ Performance improved

24Meng, Zhong, et al. "Speaker-invariant training via adversarial learning." 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018.
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Text Robustness
Frame-level multi-task/adversarial training

Ls = CE(Ms(Mf (X)),ys)

Lp =
1

N

N∑
i=1

CE(Mp(Mf (xi)),y
p
i )

Ltotal = Ls + Lp

Frame-level multi-task / adversarial training
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Text Robustness
Segment-level multi-task/adversarial training

Ls = CE(Ms(Mf (X)),ys)

Lp = CE(Mp(Mf (xi)),y
p)

Ltotal = Ls + Lp

For a given segment x with N frames,
segment-level phoneme label yp is

yp = {y1, y2, . . . , yC}

yc =
Nc

N

where C is the size of the chosen phoneme
set. Nc denotes the number of occurrences
of the c-th phoneme in x

Shuai & Bing NCMMSC: Speaker Representation Learning 63 / 107



Text Robustness
Frame-level multitask + segment-level adversarial learning

Segment-level Multitask/Adversarial training

Frame-level multi-task + segment-level adv training

Shuai & Bing NCMMSC: Speaker Representation Learning 64 / 107



Text Robustness
Multi-task training with high-level content representation25

25Jin, Tu, and Mak, “Phonetic-aware speaker embedding for far-field speaker verification”.
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Text Robustness
Phoneme-aware speaker embedding learning

Extract phonetic bottleneck (PBN) from a pretrained ASR model and combine it with
the filterbanks26

26Zhou T, Zhao Y, Li J, et al. CNN with phonetic attention for text-independent speaker verification, ASRU
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Text Robustness
Phoneme-aware speaker embedding learning

▶ Triplet loss instead of softmax loss

27

27Zheng, Lei, and Suo, “Phonetically-Aware Coupled Network For Short Duration Text-Independent Speaker Verification.”
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Text Robustness
Speech representation disentanglement

�
The general idea: Decomposition and Reconstruction. The application
is far more than speaker modeling

Applications
▶ Speaker representation learning
▶ Voice conversion
▶ Speech synthesis/ Voice Cloning
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Speech representation disentanglement
Back to old times

Joint Factor Analysis for speaker representation learning28

M = MUBM +Vy +Dz+Ux

▶ Gaussian priors assumed for factors y, z, x
▶ MUBM, V, D, U are estimated using EM algorithm
▶ V captures main speaker variability (Eigen voices)
▶ D captures channel variability
▶ U captures residual variability

28Kenny, Patrick, et al. "Joint factor analysis versus eigenchannels in speaker recognition." TASLP 2007
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Speech representation disentanglement
Neural Factor Analysis: Neglect the phoneme variations by additional alignment 29

29Lin W W, He C H, .et, Self-supervised Neural Factor Analysis for Disentangling Utterance-level Speech Representations, ICML 2023
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Speech representation disentanglement
Decouple and Reorganization of Phonetic Information30

▶ Segment-level reconstruction
▶ Decoupling the speaker and text information
▶ For the text-independent task, we neglect the text

information
▶ For the text-dependent task, we use the combined

embedding
▶ Text-adaptive task: Modify the text information in

the embedding while keeping the speaker identity.
(Change the enrollment keyword)

30Yang Y*, Wang S*, Gong X, et al. Text adaptation for speaker verification with speaker-text factorized embeddings. ICASSP 2020
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Speech representation disentanglement
Decouple and Reorganization of Phonetic Information31

▶ Frame-level Reconstruction
▶ Center frame-level speaker

representations towards its mean
▶ Coarse-grained phoneme

categories (Vowel, semi-vowel,
affricate, ...)

31Hong Q B, Wu C H, Wang H M. Decomposition and Reorganization of Phonetic Information for Speaker Embedding Learning.
TASLP 2023
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Speech representation disentanglement
RecXi with multiple Gaussian Inference32

32Liu T C, Disentangling Voice and Content with Self-Supervision for Speaker Recognition
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Speech representation disentanglement
Codec Approach: Speech Tokenizer

�
Ensure the first layer representations contain content-related information,
the subsequent residual layers will naturally fill in the gaps with remaining
details—specifically, modeling the paralinguistic information.33

33Zhang X, Zhang D, Li S, et al. SpeechTokenizer: Unified Speech Tokenizer for Speech Large Language Models[J]. arXiv preprint
arXiv:2308.16692, 2023.
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Speech representation disentanglement
Codec Approach: Speech Tokenizer

Semantic Distillation to enable the disentanglement

▶ Continious distillation Output of
hubert’s 9-th layer/Average across all
layers
Ldistll =
1
T

∑T
t=1 log σ

(
cos

(
Aqt1, s

t
))

▶ Discrete distillation pseudo-label
prediction
Ldistll =
− 1

T

∑T
t=1 u

t log
(
Softmax

(
Aqt1

))

.
Assume hubert is a perfect se-
mantic encoder
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Explore model capacity via probing tasks
Analyze the information encoded

�
Assumption: If a certain attribute is encoded in the speaker representation,
the accuracy of a classifier predicting this property depends on how well it’s
embedded.34,35,36,37

▶ Speaker-related attributes: identity, gender, and speaking rate.
▶ Text-related factors: spoken terms, word order, and utterance length.
▶ Channel-related elements include the handset ID and noise type.

34Wang, Qian, and Yu, “What does the speaker embedding encode?”
35Belinkov and Glass, “Analyzing hidden representations in end-to-end automatic speech recognition systems”.
36Raj et al., “Probing the information encoded in x-vectors”.
37Zhao et al., “Probing Deep Speaker Embeddings for Speaker-related Tasks”.
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Explore model capacity via probing tasks
Analyze the information encoded

Illustration of the paradigm: Probing pretrained embeddings with proxy tasks38

38Chowdhury, Durrani, and Ali, “What do end-to-end speech models learn about speaker, language and channel information? a
layer-wise and neuron-level analysis”.
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Explore model capacity via probing tasks
Analyze the information encoded

Examples of the speaker identity task and word order task39

39Wang, Qian, and Yu, “What does the speaker embedding encode?”
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Measuring the importance through visualization
Class Activation Map (CAM)-GradCAM

In the context of speaker modeling, f is the speaker classifier, c represents the class, θ
represents the trainable model parameters.

yc = fc(x; θ)

For the k-th activation map Ak(e.g. k represents the k-th channel), each entry wkc
ij is

defined as

wkc
ij = ReLU

(
∂yc

∂Ak
ij

)
Saliency map is defined as the linear combination

Sc
ij = ReLU

(∑
k

wkc
ij ·Ak

ij

)

Shuai & Bing NCMMSC: Speaker Representation Learning 80 / 107



Measuring the importance through visualization
Visualization in Speaker Recognition40,41

40Li et al., “Reliable visualization for deep speaker recognition”.
41Li et al., “Visualizing data augmentation in deep speaker recognition”.
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New paradigm to model speakers
Different tasks, different approaches

�
1. Pretrained speaker embeddings as additional inputs
2. Joint training to learn task-specific embeddings
3. Implict speaker modeling
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New paradigm to model speakers
Example: Explict speaker modeling for Zero-shot TTS42,43,44

42Jia et al., “Transfer learning from speaker verification to multispeaker text-to-speech synthesis”.
43Casanova et al., “Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for everyone”.
44Wu et al., “Adaspeech 4: Adaptive text to speech in zero-shot scenarios”.
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New paradigm to model speakers
Example: Implict speaker modeling for Zero-shot TTS45,46,47

45Wang et al., “Neural codec language models are zero-shot text to speech synthesizers”.
46Du et al., “UniCATS: A Unified Context-Aware Text-to-Speech Framework with Contextual VQ-Diffusion and Vocoding”.
47Le et al., “Voicebox: Text-guided multilingual universal speech generation at scale”.
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New paradigm to model speakers
Example: towards controlability and new voice generation48,49,50,51

48Zhang et al., “PromptSpeaker: Speaker Generation Based on Text Descriptions”.
49Stanton et al., “Speaker generation”.
50Shimizu et al., “PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language

Descriptions”.
51Bilinski et al., “Creating new voices using normalizing flows”.
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New paradigm to model speakers
Example: Explict speaker modeling for zero-shot voice conversion525354

52Zhang et al., “SIG-VC: A Speaker Information Guided Zero-Shot Voice Conversion System for Both Human Beings and Machines”.
53Chen and Duan, “ControlVC: Zero-Shot Voice Conversion with Time-Varying Controls on Pitch and Rhythm”.
54Hussain et al., “ACE-VC: Adaptive and Controllable Voice Conversion Using Explicitly Disentangled Self-Supervised Speech

Representations”.

Shuai & Bing NCMMSC: Speaker Representation Learning 87 / 107



New paradigm to model speakers
Example: Implict speaker modeling for zero-shot voice conversion55,56,57

55Choi et al., “Neural analysis and synthesis: Reconstructing speech from self-supervised representations”.
56Wu and Lee, “One-shot voice conversion by vector quantization”.
57Wu, Chen, and Lee, “Vqvc+: One-shot voice conversion by vector quantization and u-net architecture”.
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New paradigm to model speakers
Example: Explict speaker modeling for target speaker extraction585960

58Zmolikova et al., “Neural Target Speech Extraction: An overview”.
59Delcroix et al., “Single channel target speaker extraction and recognition with speaker beam”.
60Ge et al., “Spex+: A complete time domain speaker extraction network”.
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New paradigm to model speakers
Example: Implict speaker modeling for target speaker extraction61,62

61Zeng et al., “SEF-Net: Speaker Embedding Free Target Spekaer Extraction Network”.
62Yang et al., “Target Speaker Extraction with Ultra-Short Reference Speech by VE-VE Framework”.
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Wespeaker
Introduction

Wespeaker is a speaker embedding learning toolkit designed for research and
production purposes, it characterized by
▶ Lightwight codebase
▶ SOTA perfermance
▶ Discriminative and SSL based paradigms
▶ Runtime/Deployment support
▶ Adopted by research groups from both companies and academic institutions:

▶ Tencent

▶ Meituan

▶ China Telecom

▶ NVIDIA

▶ Tsinghua University

▶ The Chinese University of Hong Kong (Shenzhen)

▶ Shanghai Jiao Tong University

▶ University of Science and Technology of China

▶ National University of Singapore

▶ Institute for Infocomm Research (I2R)

▶ Brno University of Technology.
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Wespeaker
Build your own ASV system

▶ Data Preparation
▶ Data Downloading
▶ Formating
▶ Transformation

▶ Model Training
▶ On-the-fly Data Augmentation
▶ Model Selection
▶ Large-margin Fine-tuning

▶ Backend Scoring
▶ As-norm
▶ PLDA / A-PLDA
▶ Score Calibration (coming soon)
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Wespeaker
Unified IO for data management

Figure: Unified I/O system

Unified I/O system
▶ Also adopted in wenet ASR toolkit
▶ Inspired by webdataset and tfrecord

Idea
▶ Raw: load wav and label files from disk (small

data)
▶ Shard:

▶ Pack a set of small files into a bigger shard
▶ Read and decompress the shard files on-the-fly

▶ Feat: Compatible with kaldi-style feature files
▶ Effectively loading large-scale datasets

Shuai & Bing NCMMSC: Speaker Representation Learning 94 / 107



Wespeaker
Data Preparation

Step 1: Download and prepare metadata
i f [ ${ s t ag e } −l e 1 ] && [ ${ stop_stage } −ge 1 ] ; then

echo " Prepa re d a t a s e t s . . . "
. / l o c a l / prepare_data . sh −−s tage 2 −−stop_stage 4 −−data ${ data }

f i

Step 2: Covert train and test data
i f [ ${ s t ag e } −l e 2 ] && [ ${ stop_stage } −ge 2 ] ; then

echo " Cover t t r a i n and t e s t data to ${data_type } . . . "
f o r d s e t i n vox2_dev vox1 ; do

i f [ $data_type == " sha rd " ] ; then
python t o o l s /make_shard_l i s t . py −−num_utts_per_shard 1000 \

−−num_threads 16 \
−−p r e f i x s h a r d s \
−−s h u f f l e \
${ data }/ $dse t /wav . scp ${ data }/ $dse t / u t t 2 spk \
${ data }/ $dse t / s ha r d s ${ data }/ $dse t / sha rd . l i s t

e l s e
python t o o l s /make_raw_list . py ${ data }/ $dse t /wav . scp \

${ data }/ $dse t / u t t 2 spk ${ data }/ $dse t / raw . l i s t
f i

done
f i
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Wespeaker
Model Training

Step3: Start training
i f [ ${ s t ag e } −l e 3 ] && [ ${ stop_stage } −ge 3

] ; then
echo " S t a r t t r a i n i n g . . . "
num_gpus=$ ( echo $gpus | awk −F ’ , ’ ’ { p r i n t NF

} ’ )
t o r c h r u n −−s t anda l o n e −−nnodes=1 −−

nproc_per_node=$num_gpus \
wespeaker / b i n / t r a i n . py −−co n f i g $ c o n f i g \

−−exp_di r ${ exp_di r } \
−−gpus $gpus \
−−num_avg ${num_avg} \
−−data_type "${data_type }" \
−−t ra i n_da ta ${ data }/ vox2_dev/${data_type

} . l i s t \
−−t r a i n_ l a b e l ${ data }/ vox2_dev/ u t t 2 spk \
−−reverb_data ${ data }/ r i r s / lmdb \
−−no i se_data ${ data }/musan/ lmdb \
${ che ckpo i n t :+−−checkpo i n t $ checkpo i n t }

f i

Dataset Config:
da ta s e t_arg s :

speed_per tu rb : True
num_frms : 200
aug_prob : 0 . 6
# prob to add r e v e r b

& no i s e aug pe r
sample

fbank_args :
num_mel_bins : 80
f r ame_sh i f t : 10
f rame_length : 25
d i t h e r : 1 . 0

spec_aug : Fa l s e
spec_aug_args :

num_t_mask : 1
num_f_mask : 1
max_t : 10
max_f : 8
prob : 0 . 6

Data Augmentation:
# add no i s e
d a t a s e t = Pro c e s s o r (

da ta s e t , p r o c e s s o r
. add_reverb_noise ,
reverb_data ,

no ise_data ,
resample_rate ,
aug_prob )

# speed p e r t u r b
d a t a s e t = Pro c e s s o r (

da ta s e t , p r o c e s s o r
. speed_perturb ,
l e n ( spk2 i d_d i c t ) )

# specaug
da t a s e t = Pro c e s s o r (

da ta s e t , p r o c e s s o r
. spec_aug , ∗∗
c o n f i g s [ ’
spec_aug_args ’ ] )
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Wespeaker
SOTA Model Support

Model Arch:
▶ ResNet Series
▶ TDNN
▶ ECAPA-TDNN
▶ RepVGG
▶ CAM++

Pooling Methods:
▶ TSTP
▶ ASTP
▶ MQMHASTP

Loss Function:
▶ add_margin
▶ arc_margin
▶ sphere
▶ sphereface2
▶ intertopk
▶ subcenter

Model Config:
model : ResNet34

# ECAPA, CAMPPlus ,
REPVGG,
ResNet152

model_args :
feat_dim : 80
embed_dim : 256
poo l i ng_func : "TSTP"

# TSTP, ASTP,
MQMHASTP

two_emb_layer : F a l s e
p r o j e c t i o n_a r g s :

p r o j e c t_type : "
arc_margin "

# add_margin ,
arc_margin ,
sphere ,
s phe r e f a c e2 ,
softmax ,
aam_intertopk

s c a l e : 32 .0
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Wespeaker
Back-end Support

Back-end Support:
▶ Cosine
▶ PLDA
▶ Adapt-PLDA

Others:
▶ Score normalization
▶ QMF based Calibration

Scoring:
i f [ ${ s t ag e } −l e 5 ] && [ ${ stop_stage } −ge 5

] ; then
echo " Score . . . "
l o c a l / s c o r e . sh \

−−s tage 1 −−stop−s t age 2 \
−−data ${ data } \
−−exp_di r $exp_dir \
−−t r i a l s " $ t r i a l s "

f i

i f [ ${ s t ag e } −l e 6 ] && [ ${ stop_stage } −ge 6
] ; then

echo " Score norm . . . "
l o c a l / score_norm . sh \

−−s tage 1 −−stop−s t age 3 \
−−score_norm_method $score_norm_method \
−−cohor t_se t vox2_dev \
−−top_n $top_n \
−−data ${ data } \
−−exp_di r $exp_dir \
−−t r i a l s " $ t r i a l s "

f i
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Wespeaker
Deployment and product-oriented setups

Figure: Pretrained Model List

Export Jit:
i f [ ${ s t ag e } −l e 7 ] && [ ${ stop_stage } −ge 7

] ; then
echo " Export the be s t model . . . "
python wespeaker / b i n / e x p o r t_ j i t . py \

−−con f i g $exp_di r / c o n f i g . yaml \
−−checkpo i n t $exp_di r /models /avg_model . pt \
−−ou t p u t_ f i l e $exp_di r /models / f i n a l . z i p

f i

Export Onnx:
exp=exp # Change i t to your expe r iment d i r
onnx_dir=onnx
python wespeaker / b i n / export_onnx . py \

−−con f i g $exp/ c o n f i g . yaml \
−−checkpo i n t $exp/avg_model . pt \
−−output_model $onnx_dir / f i n a l . onnx
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Wespeaker
Deployment and product-oriented setups

Figure: Wespeaker Demo Page

Command-line usage:
wespeake r −−ta sk embedding −−aud i o_ f i l e aud io . wav −−

ou t p u t_ f i l e embedding . t x t −g 0
wespeake r −−ta sk embedding_kald i −−wav_scp wav . scp −−

ou t p u t_ f i l e / path / to / embedding −g 0
wespeake r −−ta sk s i m i l a r i t y −−aud i o_ f i l e aud io . wav −−

aud i o_ f i l e 2 aud io2 . wav −−g 0

Python programming usage:
impor t wespeaker

model = wespeaker . load_model ( ’ c h i n e s e ’ )
# set_gpu to enab l e the cuda i n f e r e n c e , number < 0 means

u s i n g CPU
model . set_gpu (0 )
embedding = model . ext ract_embedd ing ( ’ aud io . wav ’ )
utt_names , embeddings = model . e x t r a c t_embedd ing_ l i s t ( ’

wav . scp ’ )
s i m i l a r i t y = model . c ompu t e_s im i l a r i t y ( ’ aud io1 . wav ’ , ’

aud io2 . wav ’ )
d i a r_ r e s u l t = model . d i a r i z e ( ’ aud io . wav ’ )
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Wespeaker
Competitive performance

Table: Supervised results achieved using different architectures on the VoxCeleb dataset, “dev”
of part 2 is used as the training set

Literature/Toolkits Architecture
voxceleb1_O voxceleb1_E voxceleb1_H

EER(%) minDCF EER(%) minDCF EER(%) minDCF

IDLab VoxSRC 202063 ECAPA-TDNN 0.870 0.107 1.120 0.132 2.120 0.210

BUT VoxSRC 201964 ResNet34 1.310 0.154 1.380 0.163 2.500 0.233

AsvSubtools1
ECAPA-TDNN 0.856 - - - - -

Conformer 0.792 - - - - -

SpeechBrain2
TDNN 3.23 - - - - -

ECAPA-TDNN 0.90 - - - - -
ECAPA-TDNN * 1.30 - 1.98 - 3.62 -

Nemo3
TDNN 1.96 - - - - -

ECAPA-TDNN 0.92 - - - - -
titanet_large 0.66 - - - - -

Wespeaker

TDNN 1.590 0.166 1.641 0.170 2.726 0.248
ECAPA-TDNN 0.728 0.099 0.929 0.100 1.721 0.169

CAM++ 0.654 0.087 0.805 0.092 1.576 0.164
RepVGG 0.750 0.083 0.846 0.090 1.495 0.141

ResNet34 0.723 0.069 0.867 0.097 1.532 0.146
ResNet50 0.803 0.061 0.887 0.092 1.519 0.136
ResNet101 0.542 0.052 0.758 0.079 1.398 0.128
ResNet152 0.495 0.033 0.685 0.069 1.205 0.105
ResNet221 0.505 0.045 0.676 0.067 1.213 0.111
ResNet293 0.447 0.043 0.657 0.066 1.183 0.111

63Desplanques, Thienpondt, and Demuynck, “Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based
speaker verification”.

64Zeinali et al., “But system description to voxceleb speaker recognition challenge 2019”.
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Wespeaker
Results on CNCeleb

Table: Results on the CNCeleb evaluation set

Toolkits Architecture EER(%) minDCF

ASVSubtools ResNet34 9.141 0.463

Wespeaker

TDNN 8.960 0.446
ECAPA-TDNN 7.395 0.372

CAM++ 7.052 0.368
ResNet34 6.492 0.354
ResNet221 5.655 0.330
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Wespeaker
Results on VoxCeleb

Table: Performance (EER%) of SSL-based systems on the VoxCeleb evaluation set

Toolkits Paradigm Architecture VoxCeleb1_O VoxCeleb1_E VoxCeleb1_H

3Dspeaker RDINO ECAPA-TDNN (C1024) 3.16 - -

wespeaker

SimCLR ECAPA-TDNN 8.523 9.417 14.907
MoCo ECAPA-TDNN 8.709 9.287 14.756

DINO ResNet34 3.170 3.324 5.821
DINO ECAPA-TDNN (C512) 3.016 3.093 5.538
DINO ECAPA-TDNN (C1024) 2.627 2.665 4.644
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Wespeaker
A comprehensive example of using Wespeaker65,66

Step 1: Clustering-based speaker diarization system, filter out low-quality segments.
Step 2: Train a DINO system on the filtered data
Step 3: Fintuning the pretrained DINO system in a supervised setup.

65Wang et al., “Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition”.
66Yu et al., “AutoPrep: An Automatic Preprocessing Framework for In-the-Wild Speech Data”.
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Wespeaker
Filter-Pretrain-Finetune pipeline

Table: Comparison of performance on CNCeleb-Eval with other pretrain-finetune methods.

System
Pretraining Configurations Finetuning Configurations

EER(%) MinDCF
Data Model Role Data Model

67 VoxCeleb2 ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 10.65 -
68 VoxCeleb2 ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 8.710 0.422
69 VoxCeleb2 ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 10.03 0.539
70 CNCeleb1 HuBERT (94.6M) Frontend CNCeleb1 HuBERT + ECAPA-TDNN 10.86 -
7 CNCeleb-Train HuBERT (94.6M) Frontend CNCeleb-Train HuBERT + ECAPA-TDNN 8.890 -
7 CNCeleb-Train Conformer (172.2M) Frontend CNCeleb-Train Conformer + MHFA 7.730 0.406

71 * Mix 94k hr WavLM (94.7M) Frontend VoxCeleb2 + CNCeleb-Train WavLM+MAM+MHFA 6.890 0.378
72** WenetSpeech Conformer (18.8M) Init CNCeleb-Train Conformer 7.420 0.443

Ours WenetSpeech ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 7.373 0.383
Ours + filtering ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 7.339 0.377
Ours WenetSpeech ECAPA-TDNN Init CNCeleb-Train ECAPA-TDNN 6.738 0.338
Ours + filtering ECAPA-TDNN Init CNCeleb-Train ECAPA-TDNN 6.474 0.331

67Heo et al., “Self-supervised curriculum learning for speaker verification”.
68Kang et al., “Augmentation adversarial training for self-supervised speaker representation learning”.
69Han et al., “Improving dino-based self-supervised speaker verification with progressive cluster-aware training”.
70Peng et al., “Improving speaker verification with self-pretrained transformer models”.
71Peng et al., “Parameter-efficient transfer learning of pre-trained Transformer models for speaker verification using adapters”.
72Liao et al., “Towards a unified conformer structure: from asr to asv task”.
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Conclusions and Takeaway

▶ Speaker modeling is not all about speaker recognition.
▶ Speaker modeling is more than embedding learning.
▶ Customize the speaker modeling approach for the specific task.
▶ Try wespeaker! https://github.com/wenet-e2e/wespeaker
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Contact

Email: wsstriving@gmail.com
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