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Speaker Modeling: Background, Applications and Trends
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Speaker Modeling

Speaker modeling aims to capture information related to the identity of the speaker while
neglecting other attributes.

Shuai & Bing NCMMSC: Speaker Representation Learning



Speaker modeling in different tasks
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Speaker Modeling

Tradition Speaker Modeling
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i-vector
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Target Speaker VAD

Target Speaker Extraction
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Applications of Speaker Modeling

Embedding Extraction for speaker verification

Speaker Verification: My voice is my password

Speaker

Embedding
.\é ||||'|||' g \ > threshold?

/ Same
\ Different

— < threshold?
Calculate

Similarity

scalar

Figure adapted from Hung-yi Lee's DLHLP20 slides?

1https ://speech.ee.ntu.edu.tw/ tlkagk/courses/DLHLP20/
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Applications of Speaker Modeling

Reference/Cue modeling for Target speech extraction

Target Speech Extraction: | only hear your voice

» Separator

Speaker T

Embedding

\ 4

Speaker Embedder
Encoder Network Decoder

MkLre Reference Speech of Estimated
Signal Target Speaker Target Speaker
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Applications of Speaker Modeling

Target voice identifier for Text-to-speech

Speaker modeling for the target voice.

Synthesized voice

7‘5 —> =1L — 4

Speaker info n

Text frontend
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Applications of Speaker Modeling

Embedding clustering based Speaker diarization

Speaker diarization: Who Spoke When?

K ‘\ Diarization labels
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Speech Activity :

; Detection ' Clustering

: ' (+ resegmentation)
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Speaker Modeling

GMM-UMB & GMM-Supervector

GMM-UBM Adapted
GMM
GMM
Means adaptation
Sequence of
observation BBy
vectors
=1[0,,0, ... 0, ... O] e
usm I 1 l
Training Supervector
"
Speech signal e i
Large i ™
Database

Figure: GMM-UBM? model for speaker modeling

@Zheng, Zhang, and Xu, “Text-independent speaker identification
using gmm-ubm and frame level likelihood normalization”.

Gaussian Mixture Model (GMM)?

K K
> p(x) =31 N (x| pg, Bg) st Tt e =1
» Any distribution can be approximated by a weighted linear
combination of several Gaussian distributions

»  When using GMM to model the speaker’s acoustic features,
the number of Gaussians can be considered as the types of
sounds produced.

Universal Background Model (UBM)

P Usually, a person’s registered voice is limited (a few seconds),
making it difficult to train a GMM with this data.

» UBM on a large-scale dataset can be trained first and then
adapted to a specific speaker’s data.

GMM-Supervector

» Concatenate the mean vector of each gaussian to represent
the speaker

?Reynolds et al., “Gaussian mixture models.”

Shuai & Bing
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Speaker Modeling

i-vector

il Feat
‘M!H“—’{ I-Vector Extractor

AT UBM| | T-matrix PLDA S

Feat l l
il —P{ I-Vector Extractor

Figure: Block diagram of speaker recognition
system based on i-vector

Drawbacks of GMM-Supervector

P Supervectors are extremely high-dimensional (often tens of
thousands of dimensions), making them computationally
challenging

Decompose Supervector to low-dimensional
i-vector?:

M(s) =m + Tw(s)

»  M(s): GMM-Supervector for speaker s
> m: speaker-independent supervector

» T: total variability matrix, capturing all sources of variability
in the voice samples (both speaker-related and
channel-related)

> w(s): i-vector for speaker s

?Dehak et al., “Front-end factor analysis for speaker verification”.

Shuai & Bing
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Speaker Modeling

d-vector

Stacked filterbank )
energy features d-vector s the averaged activations

i from the last hidden layer.
O P(spk,) a
: . d-vector? stands out as
P> Very early attempts at applying deep neural networks to
speaker information modeling
» Demonstrated a good complementarity with i-vector
. P(spk,)
. Fully-connected maxout hidden layers. #Variani et al., “Deep neural networks for small footprint
The last two layers drop 0.5 activations. text-dependent speaker verification”.

Output layer is runuwd in
enrollment and evaluation.

Figure: Architecture of d-vector
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Speaker Modeling

X-vector

Table: Architecture of TDNN based speaker

embedding extractor, T denotes the sequence x-vector? stands out as

length, N is the number of speakers

»  The first deep speaker embedding that beats traditional
methods on well-recognized datasets (NIST SRE)

Layer ‘ Layer context ‘ Input x output »  The first work that introduces segment-level optimization
: _ b
framel [t —2.t4 2] 200 x 512 Powerful variant ECAPA-TDNN
frame2 {t—2t,t+2} 1536 x 512 “Snyder et al., “X-vectors: Robust dnn embeddings for speaker
frame3 {t—3,t,t+3} 1536 x 512 recognition”.
framed4 {t} 512 x 512 ”Desplanques, Thienpondt, and Demuynck, “Ecapa-tdnn:
frameb {t} 512 x 1500 Emphasized channel attention, propagation and aggregation in tdnn
stats poo“ng [()7 T] 1500 x 3000 based speaker verification”.
segmentl {0} 3000 x 512
segment2 {0} 512 x 512
projection {0} 512 x N

Shuai & Bing
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Speaker Modeling

r-vector

Table: Architecture of ResNet34 based speaker
embedding extractor, T' denotes the sequence
length, N is the number of speakers

Layer name Structure Output
r-VeCtora Stands out as
Input - 40 x T x 1 .
Conv2D-1 3 x 3, Stride 1 20 x T x 32 »  The winner system of both tracks of VoxSRC 2019.

3 % 3.32 P Utilized as the embeddings in the winner systems of all 4
X292\ 3 Stridel 40 x T x 32 tracks in DIHARD 2019.

ResNetBlock-1

ResNetBlock-2 x 4, Stride 2 20 x % x 64 @Zeinali et al., “But system description to voxceleb speaker
3 % 3.128 recognition challenge 2019".
,

ResNetBlock-3 x 6, Stride 2 10 x £ x 128

3% 3,128 4

3 x 3,256 . T .
ResNetBlock-4 3% 3,256 ¢ 3, Stride 2 5 x § x 256
StatsPooling - 10 x 256
Flatten - 2560
Dense - 256
Projection - N

Shuai & Bing NCMMSC: Speaker Representation Learning 13 / 107



Speaker Modeling

Data: From well-labeled recordings to unlabeled in-the-wild massive data

Labeled data:

» Labeling the data is costly

> Automatically collected data using speaker information, like voxceleb, suffering from
the privacy issue
» The voxceleb dataset is no longer accessible from the official website

Unlabeled data:
» Easily to obtain
» Covers a wider range of real data
» No privacy issue

Training paradigm: Supervised to Unsupervised /Semi-supervised /Self-supervised

Shuai & Bing NCMMSC: Speaker Representation Learning 14 / 107



Speaker Representation Learning: Trends

Model: From shallow to deep

» GMM, i-vector can be regarded as single-layer MLP
» d-vector, j-vector, x-vector: less than 10 layers.

» ResNet based models (common setup: 34 layers, extended to 293 layers or even
500+ layers in challenges)
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Speaker Representation Learning: Trends

Modality: From uni-modal to multi-modal

» Pure audio modality
» Audio-visual speaker embedding

Shuai & Bing NCMMSC: Speaker Representation Learning 16 / 107



Speaker Representation Learning: Trends

Paradigm: Training from scratch to leveraging pretrained models

» Training speaker discrinative models from scratch
> Leveraging large pretrained speech models such as WavLM
» Semi-supervised: Finetuning on the DINO models

» Semi-supervised: lteratively clustering and supervised finetuning

Shuai & Bing NCMMSC: Speaker Representation Learning 17 / 107



Speaker Representation Learning: Trends

Task: From single task to cross-task

» Pretrained embeddings to be used in different tasks
> Explict joint optimization with the specific task

» Implict speaker modeling in related tasks

Shuai & Bing NCMMSC: Speaker Representation Learning 18 / 107



OIMES

Discriminative Speaker Representation Learning

Shuai & Bing
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Discriminative Loss Functions

Philosophy

Optimize the neural network towards the speaker classification direction.
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Discriminative speaker Representation learning

Comparison with ASR training

Compared with the classic phoneme classification based ASR system:

ASR: Close-set problem, the classes are the pre-defined phonemes/senones in the
inference stage

Speaker: Open-set problem, usually we assume the speakers in the inference stage are
not present in the training set

Shuai & Bing NCMMSC: Speaker Representation Learning 21 / 107



Discriminative Loss Functions

Classification based loss functions provide discriminative supervision signals, while

margin-based ones®3 are supervior to the standard softmax-based one*.
N W7 x;+b
1 e vt TR
Lsottmax = — Z log (1)
c WTx;+b;
NI djoi€ ’
N
1 6s(cos(Gy%,%er))
Laam- =——)>» log—— 2
AAM-Softmax N ; g 7 ( )

zHuang, Wang, and Yu, “Angular Softmax for Short-Duration Text-independent Speaker Verification.”
3Cai, Chen, and Li, “Exploring the encoding layer and loss function in end-to-end speaker and language recognition system’.
4Xiang et al., “Margin matters: Towards more discriminative deep neural network embeddings for speaker récognition”.
Shuai & Bing NCMMSC: Speaker Representation Learning 22 / 107



Discriminative speaker Representation learning

The essence of learning

An extra center loss??¢ can be applied to

minimize the within-class variance.
The margin-based loss only enlarges the
inter-speaker distance.
L= LAAM-Softmax + LC

{ w Decision
o
% Boundary

w2

1 N
= LAAM-Softmax + 5 Z Hxl — Cy; ”2
=1

Figure: The deCiSiOn boundary Change after @Cai, Chen, and Li, “Exploring the encoding layer and loss

. . function in end-to-end speaker and language recognition system”.
addlng the margln—based IOSS' bLi et al., “Deep Discriminative Embeddings for Duration Robust

Speaker Verification.”

“Wang et al., “Discriminative neural embedding learning for
short-duration text-independent speaker verification”.

Shuai & Bing NCMMSC: Speaker Representation Learni 23 / 107



OIMES

Self-supervised based Speaker Represenetation Learning

Shuai & Bing
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Self-supervised based Speaker Represenetation Learning

> Leveraging large pre-text pretraining models.
» Self-supervised Pretrained Speech Models
» ASR Model Initialization
» Efficient Finetuning

» Self-supervised Learning Approach

» SimCLR/MoCo/DINO
» Stage-wise lterative Training

Shuai & Bing NCMMSC: Speaker Representation Learning 25 / 107



Self-supervised based Speaker Represenetation Learning

Finetuning Approach

Mask Prediction Loss

» Self-Supervised Pretrained Speech Models i
> Wav2veca Target labels

> HuBERT®
> WavLM¢ Transformer Encoder with
. Gated Relative Position Bias
» UniSpeech?
| t 1
“Baevski et al., “wav2vec 2.0: A framework for self-supervised learning of Xy X5 X
speech representations”. T T I

"Hsu et al., “Hubert: Self-supervised speech representation learning by masked CNN Encoders

prediction of hidden units”. 1 t t
€Chen et al., “Wavlm: Large-scale self-supervised pre-training for full stack Utterance

speech processing”. Mixing audio W"W

dChen et al., “Unispeech-sat: Universal speech representation learning with

speaker aware pre-training’. Figure: Model Architecture of WavLM

Shuai & Bing NCMMSC: Speaker Representation Learning 26 / 107



Self-supervised based Speaker Represenetation Learning

Finetuning Approach

Pre-trained Model E ECAPA-TDNN
Finetuning SSL Speech Models on —— "“I“ o
Speaker Verification Task? : : |l S —

Transformer Layer 2 [ Attentive Statistic Pooling |

> ‘ ECAPA-TDNN Frame Encoder

» Replace Fbank with representation —— \
from pre-trained models. I

x

( CNN Feature Encoder STFT + Mel Filter Bank
- X

» Learnable weighted sum

| QR SITEEVE TS

a i . . : Hidden Representations Sequence
Chen et al., “Large-scale self-supervised speech representation

learning for automatic speaker verification". W : Leamable Weight |

Figure: Leverage Representations from
Pre-trained Model
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Self-supervised based Speaker Represenetation Learning

Finetuning Approach

Speaker Extractor
Back-end

x N
Efficient finetuning Self-supervised Model [ = )
with adapters on Speaker Verification? reesowars )/ Feedorars
.
» Frozen the large pretrained model
» Use adapters for efficient finetuning on I:

speaker tasks.

CNN Encoder

?Peng et al., “Parameter-efficient transfer learning of pre-trained
Transformer models for speaker verification using adapters”. O Learnable

Wl st OO Qo

Waveform

Figure: Schematic diagram of efficient finetuning
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Self-supervised based Speaker Represenetation Learning

Finetuning Approach

Finetuning ASR Models on Speaker
Verification Task??

» Pre-train model with ASR dataset.

» Initialize for speaker task training.

?Liao et al., “Towards a unified conformer structure: from asr to
asv task”.

"Cai et al., “Pretraining Conformer with ASR for Speaker
Verification”.

Figure:

Embedding +————| Linear+LN.

Attentive Statistic
Pooling

Linear+Swish+LN

T

I

i [ conformer Bock |xL

H Positional
H Encoding
: Convolution
| Subsampling

Positional
Encoding
Convolution
Subsampling

Inputs  ASV.

| ASR  Inputs

[ conformer iock | xL. |

Schematic diagram of ASR transferring

Shuai & Bing
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Self-supervised based Speaker Represenetation Learning

Self-supervised Learning Approach

‘Within the same track = same identity but different content

Assumption of self-supervised learning on
Speaker Verification Task.?

» Segments from same utterances belong
to same speaker.

» Segments from different utterances
belong to different speakers.

Different tracks = different identity and different content
?Huh et al., “Augmentation adversarial training for self-supervised
speaker recognition”.

Figure: Schematic diagram of assumption.

Shuai & Bing NCMMSC: Speaker Representation Learning 30 / 107



Self-supervised based Speaker Represenetation Learning

Metric based Loss Functions

Metric learning based loss functions provide contrastive supervision signals, such as
Triplet, Prototypical, GE2E®and Angular Prototypical®.

N
1
Liipler = 77 > max(0, [[x0 = x;1113 — %50 — Xkl + m) (3)
j=1

L LS g uere s~ | B @
Prototypical = — 77 Z 08 N . where S;k = ||X5,M — Ckl|2
N j=1 Zk:l eSik

5Wan et al., “Generalized end-to-end loss for speaker verification”.

©Chung et al., "In defence of metric learning for speaker recognition”.

Shuai & Bing NCMMSC: Speaker Representation Learning 31/ 107



Self-supervised based Speaker Represenetation Learning

SimCLR

Based on SimCLR? framework, adapt to / ! N

speaker task®? Lo e

€1,1,aug €1,2,au, en,1,aug €N 2,aug
attract § attract § «ee attract} attract §
» Crop two segments from utterance and e e acm ohacen
construct the positive and negative
H i
pairs. TP -y .

» Use metric loss to attract the positive i
pairs and repel the negative pairs. l

\X1,1,clean X1,2,clean
?Chen et al., “A simple framework for contrastive learning of W
visual representations’. witorancel preym—"

bZhang, Zou, and Wang, “Contrastive self-supervised learning for
text-independent speaker verification”.

Figure: Schematic diagram of simclr on speaker
task.
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Self-supervised based Speaker Represenetation Learning

]1\\[e]

—> Lpivo 4—

Based on DINO? framework, adapt to
speaker taskbc

Softmax
» Crop several segments from one n
utterance and only construct the Procton Head
positive pairs. fe. -
Student Speaker
» Use cross entropy loss to attract the EmbEddini Extractor
positive pairs. =

@Caron et al., “Emerging properties in self-supervised vision
transformers”.

bHan, Chen, and Qian, “Self-supervised speaker verification using
dynamic loss-gate and label correction”.

€Chen et al., “A comprehensive study on self-supervised Figure: SChematiC diagram Of DlNO on Speaker

distillation for speaker representation learning”.
task.
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Self-supervised based Speaker Represenetation Learning

Stage-wise lterative Training

Two stages based iterative

framework?b<.
pseudo labels {y; } l pseudo labels {y; }
» |: Contrastive training
Contrastive Loss Clustering Linear Classifier + Softmax Clustering
» |I: Iterative clustering =1 fe {0 | f =
d t t . Audio Encoder ® Audio Encoder ® Audio Encoder & Audio Encoder ®
and representation T T T T T
Iea rn | n g . Feature Extraction Feature Extraction Feature Extraction Feature Extraction
il;—f}‘(g T T
2Cai, Wang, and Li, “An iterative Data Augmentation bt Data Augmentation -t S
framework for self-supervised deep ' '
speaker representation learning”. audio data batch x ; audio data batch x
“sell;'_éaur;eg;::é T_::rgi:; ’with Step 1: contrastive training ‘ Step 2: iterative clustering and representation learning
Cluster-Aware-DINO for i . i i i
High-Performance Robust Speaker Figure: Schematic diagram of iterative framework for SSL speaker
erification”.

verification.

“Tao et al., “Self-supervised speaker
recognition with loss-gated learning”.
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OIMES

Multi-modal Speaker Representation Learning
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The complementation between audio and visual modality

e =4
Face Similarity: 0.74  Voice Similarity: 0.47

Face Similarity: 0.73  Voice Similarity: 0.52

& 3 S . T ) G = =
Face Similarity: 0.46  Voice Similarity: 0.79 Face Similarity: 0.47  Voice Similarity: 0.75 Face Similarity: 0.44  Voice Similarity: 0.75

(@)

L - Syanl e IS,
Face Similarity: 0.7¢ rity: 0.51 Face Similarity: 0.50  Voice Similarity: 0.83 Face Similarity: 0.54  Voice Similarity: 0.80

(b

Face Similarity: 0.79  Voice Similarity: 0.53

Face slmuamy 0.55  Voice Similarity: 0.78
Figure: The speaker similarity based on the audio or visual information”

» The upper part shows the speaker’s similarity to the same person

» The bottom part shows the speaker's similarity between different persons

7Qian, Chen, and Wang, “Audio-visual deep neural network for robust person verification”.

Shuai & Bing NCMMSC: Speaker Representation Learni 36 / 107



Audio-Visual Information Fusion

Person Embedding

A
Linear r—T

Transformation

L AN G
=l S S £ . T » Embedding-level fusion
w : ™. T . performs better than low-level
WJ T,:i:;”;?; 5 » The attention mechanism in
P - ‘ a embedding-level fusion makes
e g " it more noise-robust than
(o) Lowieve Fusin (9 ScoretovelFusion score-level fusion

Figure: Audio-visual information fusion at different levels?

?Qian, Chen, and Wang, “Audio-visual deep neural network for robust person
verification”.
37 / 107
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Multi-Modal Knowledge Distillation

From audio-visual system to single-modality system

Audio
Audio Embedding
Embedding extractor Projecl.lon
Matrix
extractor
€q AAM
e‘ Fusion . A o ll
a Model
Py
ad softmax @
e, -
& Multi-Modal P,
Projection
il softmax o
mas P,
e, 2 5 AAM
X sonmax
Visual €y
Embedding " Projection
extractor Visual jyiosy

Embedding

extractor

T Label Level Knowledge Distillation
= Embedding Level Knowledge Distillation
Ak pistribution Level Knowledge Distillation

Figure: Knowledge distillation from audio-visual system to single-modality system®

8Zhang, Chen, and Qian, “Knowledge Distillation from Multi-Modality to Single-Modality for Person Verification”.

NCMMSC: Speaker Representation Learning 38 / 107
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Multi-Modal Knowledge Distillation

From visual system to audio system

Face Encoder Face Embedding l Classifier

Projection Head Margin-based Knowledge Distillation (MKD)

Quality-based Adaptive Weight (QAW) (00000
w L <a
™ e T
Quality o
Indicator T a+m
! ' ‘ 00008 {at
QF - QA .
I Feature-based Relation-based Response-based

Audio Encoder Audio Embedding ’ I Classifier Identify Loss

Figure: Knowledge distillation from visual system to audio system®

9 Jin et al., “Cross-modal distillation for speaker recognition”.
Shuai & Bing NCMMSC: Speaker Representation Learning
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OIMES

Efficiency and Robustness
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Model Efficiency

In speaker representation learning, we mainly optimize the efficiency of the model from
two perspectives: computational efficiency and memory efficiency

» Computation Efficiency

» Knowledge Distillation

» Network Quantization

» Efficient Architecture Design
» Memory Efficiency

» Reversible Neural Networks

Shuai & Bing NCMMSC: Speaker Representation Learning 41 / 107



Model Computation Efficiency

Knowledge Distillation

Knowledge Distillation on Speaker sef-student sef-Teacher
Verification Task Lo Lo
i S abel i}
» Knowledge distillation from teacher e A
model to student model® " !
F4 ResBlock-4 > T4
» Self-knowledge distillation via feature 1
b F3 ResBlock-3 T3
enhancement -
» Knowledge distillation from r2 (s o
multi-modality to single-modality€© i
F1 ResBlock-1  ——>

T

?Wang et al., “Knowledge Distillation for Small Foot-print Deep
Speaker Embedding”.

"Liu et al., “Self-Knowledge Distillation via Feature Enhancement
for Speaker Verification”.

i Conv1

€Zhang, Chen, and Qian, “Knowledge Distillation from F_lgl:lre: _SChe_matIC dlagram Of Self_kn0W|edge
Multi-Modality to Single-Modality for Person Verification”. distillation via feature enhancement
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Model Computation Efficiency

Quantization

Quantization achieves model compression
by reducing the parameter precision

» Binary Neural Network?

5x) F(x)
» Linear and PoT(Power of Two) =
quantization®?
» K-Means based quantization€ ’ T y )
» Static and adaptive quantizer for binary o o
quantization? CR O DRV
Static Quantization Adaptive Quantization
@Zhu, Qin, and Li, “Binary Neural Network for Speaker Figure: The overvieW Of static and adaptive

Verification”. X X i
BLiy et al., “Self-Knowledge Distillation via Feature Enhancement blnary qUant|Zat|On
for Speaker Verification”.
“Wang et al., “Adaptive Neural Network Quantization For
Lightweight Speaker Verification”.
dLiu, Wang, and Qian, “Extremely Low Bit Quantization for
Mobile Speaker Verification Systems Under 1IMB Memory”.

Shuai & Bing NCMMSC: Speaker Representation Learni 43 / 107



Model Computation Efficiency

Effeicient Architecture Design

Effeicient Architecture Design on
Speaker Verification Task

» Depth-First Neural Architecture with
Attentive Feature Fusion?

> CS-CTCSCONVID®(Channel Split R
Time-Channel-Time Separable '

1-dimensional Convolution) N
» Asymmetric Enroll-Verify e b e T
Structure(ECAPA-TDNNLite€) e e
?Liu, Chen, and Qian, “Depth-First Neural Architecture With . .
Attentive Feature Fusion for Efficient Speaker Verification”. F|gu re: Schematic of CS-CTCSCONV1D

bcai et al., “CS-CTCSCONV1D: Small footprint speaker
verification with channel split time-channel-time separable
1-dimensional convolution”.

€Li et al., “Towards Lightweight Applications: Asymmetric
Enroll-Verify Structure for Speaker Verification”.

Shuai & Bing NCMMSC: Speaker Representation Learning 44 / 107



Model Computation Efficiency

Asymmetric Enroll-Verify Structure

! Enrollment Training  Verification Training Input

H | H | 80xT

: | | | ConvlD + ReLU + BN

1 | AAM Softmax Loss | | 1 | AAM Softmax Loss | | (k=3, d=1, =2)

: ) ; ; ) S 2 O OO
: H Space : : SE-Res2Block

: : Alignment : : (=5, d=1,s=1)

ConvID + ReLU + BN
(k=1.d=1,s=1)
Res2 Separable ConviD
+ReLU + BN

verified
embeddin,

enrolled
embeddin

SE-Res2Block
(=7, d=1, s=1)

| ! SE-Res2Block
H D (k9. d=1,s=1)

L-Model S-Model

ConviD +ReLU
(k=1,d=1,5=1)

[ SE-Block }

Figure: The training process of the asymmetric
structure. Frame-wise input features are fed into

the large-scale model and the small-scale model,
respectively Figure: Schematic of ECAPA-TDNNLite

Output
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Model Computation Efficiency

Performance of Computational Efficient Models

Table: The experiment results of compressed/quantized ResNet34 and other full-precision
compact architectures.

Model Size Bit-width Vox1-0

(MB) (bit) EER(%)
KMQAT-ResNet341° 3.45 4 0.957
PoT-ResNet3411 3.45 4 1.09
TWN-ResNet3412 (our impl.) 1.80 2 1.473
b-vector(adaptive)*3 0.97 1 1.72
ResNet34(binary)4 0.66 1 5.355
CS-CTCSConvld 0.96 32 2.62
ECAPA-TDNNLite 1.2 32 3.07

1°Wang et al., “Adaptive Neural Network Quantization For Lightweight Speaker Verification”.
1| et al., “Model Compression for DNN-based Speaker Verification Using Weight Quantization”.
12Li, Zhang, and Liu, “Ternary weight networks”.

13Liu, Wang, and Qian, “Extremely Low Bit Quantization for Mobile Speaker Verification Systems Under 1IMB Memory".

147Zhu, Qin, and Li, “Binary Neural Network for Speaker Verification”.
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Model Memory Efficiency

Training Memory Efficiency

Reversible Neural Networks? (RevNets)
alleviate the need to store activations in
memory during back-propagation.
Consequently, RevNets require nearly
constant memory costs as the network depth
increases.

» Partially reversible networks

» Fully reversible networks

?Liu and Qian, “Reversible Neural Networks for Memory-Efficient
Speaker Verification”.

T y
0
dc/dz«—{ 0f |« dL/dy (z=1")
\__/ dL/ds «— % 4 dc/dy
af/06 af/060
(a) (b)

Figure: Comparison between non-reversible
operator (a) and reversible operator (b)

47 / 107
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Model Memory Efficiency

GPU Memory Usage vs. Parameter Number

—A - ResNet ResNetlSBA

—e— Partially-RevNet(Basic)

—4— Fully-RevNet(Basic)

0.4 1 —¢« Ppartially-RevNet(Bottleneck)

—=— Fully-RevNet(Bottleneck)
-
O
£
=]
= 0.3
e
el
£

7
20.21 g
o> -7
o /,
o R
e
e
0.1 //’ RevNet156
///
A& ResNet34
e - *RevNet197
6 8 10 12 14 16 18 20

Number of Parameters (Millions)

Figure: GPU Memory Usage vs. Parameter Number
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Model Computation Efficiency

Other Work on Model Efficiency
» Thin-ResNet!®
» Fast-ResNet!®
» ADMMY’
» Small Footprint Text-Independent Speaker Verification!®

15Cai, Chen, and Li, “Exploring the encoding layer and loss function in end-to-end speaker and language recognition system’.
16Chung et al., “In Defence of Metric Learning for Speaker Recognition”.
17Xu et al., “Mixed Precision Low-Bit Quantization of Neural Network Language Models for Speech Recognition”.
18Balian et al., “Small footprint text-independent speaker verification for embedded systems’.
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Robustness in Speaker Representation Learning

Language

Shuai & Bing NCMMSC: Speaker Representation Learning 50 / 107



Model Robustness

Robustness to devices

The recording environment also introduces variability in modeling speaker identity,
influenced by factors like the recording device and microphone distance. To enhance

model robustness across different devices, various domain adaptation methods are applied
in speaker recognition, including

» Discrepancy-based alignment
» Adversarial learning

» Domain-specific adapter

Shuai & Bing

NCMMSC: Speaker Representation Learning
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Model Robustness to Device

Discrepancy-based alignment

Discrepancy-based alignment aims to minimize domain discrepancy in a latent feature
space and facilitate learning domain-invariant representations. To achieve this goal,
choosing a proper divergence measure is at the core of these methods. Widely used
measures include MMD??, correlation alignment (CORAL)?, etc.

Linma 2 sup (Es [¢(S)] = Er[¢(T)]) (5)

19Li, Han, and Song, “CDMA: Cross-Domain Distance Metric Adaptation for Speaker Verification”.
20y ;, Zhang, and Chen, “The coral++ algorithm for unsupervised domain adaptation of speaker recognition’
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Model Robustness to Device

Adversarial learning

B Adversarial learning employs a domain

§ § classifier to eliminate discriminative domain
information from features. Min-max

X 3 optimization in domain-adversarial training
minimizes the domain gap and enforces

Dense Layer

Statistics Pooling

Pt domain-invariant feature extraction?.

Frame-level
. T ?Chen et al., “Channel invariant speaker embedding learning with
input segment X

joint multi-task and adversarial training”.

Figure: Structure of channel-level adversarial
learning?
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Model Robustness to Device

Domain-specific adapter

Instead of directly aligning domains with discrepancy measures, incorporating additional
modules like domain-specific adapters helps capture and mitigate domain variances,
resulting in domain-invariant embeddings.

T

m ~ Embedding extractor Embedding —
(2 SHER A 4 — a
l for unseen domain 3 |
V domain | o — e ] e —
2 i :

embedding

300q2P0d UIBWO]

dense layer

Domain Label

classification i dense layer
Gering) | i : w.0)
ST T T e i N (N,F)
{1 Jencoder block DBDA D E : H] Z

pseudo-label soft / hard label

(a) Model architecture (b) []BDA (c) [JEDA

Figure: Framework with domain-specific adapters®!

2:"Huang et al., “Enhancing Cross-Domain Speaker Verification through Multi-Level Domain Adapters'.
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Model Robustness to language mismatch

Language mismatch between datasets

Observation: In real-world scenarios, speaker verification systems may degrade
when training on one language and test it on another.

Shuai & Bing NCMMSC: Speaker Representation Learning 55 / 107



Model Robustness to language mismatch

Language mismatch between enroll / test

Over 40% of the world's population is bilingual, this mismatch happens when the
languages used are different for enrollment and test.

Embedding Extractor Speaker Discriminator
7 ~ e -

I |
Target
Data

N \_ J

Wasserstein
Distance

Domain Critic

Figure: Structure of language-mismatch
adversarial learning

Shuai & Bing

NCMMSC: Speaker Representation Learni

Adversarial learning employs a language
classifier to eliminate discriminative language
information from features. Min-max
optimization in domain-adversarial training
minimizes the language gap and enforces
language-invariant feature extraction?®.

?Rohdin et al., “Speaker verification using end-to-end adversarial
language adaptation”.
ina, Huang, and Hansen, “Cross-lingual text-independent

speaker verification using unsupervised adversarial discriminative
domain adaptation”.
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Robustness

Robustness to text mismatch

Besides the speaker information, the text or content is the most crucial information
conveyed through speech.

Speaker information Speaker information

Text information Text information

Channel information Channel information

For text-independent speaker tasks, we only For text-dependent speaker tasks, we also
need speaker information need content information
Enroll: Hey Siri; Test: whatever to say Enroll: Hey Siri; Test: Hey Siri
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Text Robustness

Utilization of content (Phoneme) information in speaker modeling

The representation of Content Information
» Phoneme index
» Phoneme posteriors predicted by ASR
» Hidden layer outputs from the ASR Model
» Phrase number (Fix-phrase datasets)
>

Normalized phoneme distribution

Shuai & Bing NCMMSC: Speaker Representation Learning 58 / 107



Text Robustness

multi-task learning in the d-vector framework?2

Speaker Phone/Phrase
L I

» Text-dependent task
> Multi-task at the frame-level

Outbul
layer

» Performance improved

Explicitly modeling phonetic information
helps the text-dependent speaker verification
task, which is intuitive.

22| iy, Yuan, et al. "Deep feature for text-dependent speaker verification." Speech Communication 73 (2015): 1-13.
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Text Robustness

multi-task learning in the x-vector framework?3

Speaker Labels Phonetic Labels

00--0] 1000
I |

Segment-level 1 X
| | | | > Text-independent task

» Multi-task at the frame-level

- Frame-level

» Performance improved!

[ SN, = _
Frame-level | : Shared Layers |

23Liu, Yi, et al. "Speaker Embedding Extraction with Phonetic Information." Proc. Interspeech 20181(2018): 2247-2251.
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Text Robustness

Speaker invariant training for ASR 24

Senone Loss
Senone
Posterior

Speaker Loss
Speaker
Label s

Speaker
Posterior

» Acoustic modelling
Senone
‘ Classifier M,,

Deep
Feature f
Feature
Extractor M,

Speaker
Classifier Mg

» Adversarial training
suppressing the speaker effect

DNN .
Acoustic Model » Performance improved

24Meng, Zhong, et al. "Speaker-invariant training via adversarial learning." 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018.
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Text Robustness

Frame-level multi-task/adversarial training

m:>

“
+

£s = CE(MS(Mf(X))7 ys)

: N
3 by £y = 37 2 CEL(M5x).57)

Ly
oo,

forwandprop dackpe

Etoml = ﬁs + 'Cp

3 Speaker loss Phoneme loss
|
;zmbedding |

H : Systems ’ voxcelebl_O voxcelebl_E voxcelebl_H

Frameilevel

Segmentilevel
3 x-vector baseline | 2361 | 2470 | 4260 |
FRM-MT 2.165 l 2.1981 3.9111
e Tr— FRM-ADV 3.143 3214 5.419
Extractor
(Frame-level)
Frame-level multi-task / adversarial training
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Text Robustness

Segment-level multi-task/adversarial training

Speaket loss Phoneme loss

embedding

Shuai & Bing

TDNN Feature

Extractor
(Frame-level)

Input speech

Segr;"lem-level

L, = CE(Ms(Ms(X)),y%)
Ly = CE(Mp(My(xi)), y")
Liotal = Ls + Ep

For a given segment x with N frames,
segment-level phoneme label y? is

yp = {ylay27 s 7yC}
Ye = N
where C' is the size of the chosen phoneme

set. N, denotes the number of occurrences
of the c-th phoneme in x
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Text Robustness

Frame-level multitask + segment-level adversarial learning

Speaker loss Phoneme loss Systems | voxcelebl O  voxcelebl E  voxcelebl H
o x-vector baseline | 2.361 2.470 4.260
: SEG-MT 2.175 2.330 4.059
Segmient-level SEG-ADV 2.154 2.198 3.923

;

embedding

Segment-level Multitask/Adversarial training

Phoneme loss

Systems | voxcelebl O  voxcelebl E  voxcelebl H
frame-level x-vector baseline | 2.361 2.470 4.260
FRM-MT 2.165 2.198 3.911
TDNN Feat
- m:t‘:nme SEG-ADV 2.154 2.198 3.923
- COMBINE 2.013 2.030 3.819

(Frame-level)

Frame-level multi-task + segment-level adv training
Input speech
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Text Robustness

Multi-task training with high-level content representation®®

Pre-trained wav2vec 2.0

H Speech Model (frozen) !
1
1
| Frame-based 1
] wav2vec features 1
I
1
: Speech Recognition Part 1
1
i
! i
: D =32 v D=32 1
p Maxpool1D | FClayer — Zt t 1
1
\ X /,
Frame-based | / \
Fier-bank —>|  Speaker [ " posed i 1
letwor L tterance-base
e i Speaker Network 'speaker 1
1
i 1
I 1
1 1
1 Speaker :
I Embedding )
1
\ Speaker Classification Part y
~ -

25 Jin, Tu, and Mak, “Phonetic-aware speaker embedding for far-field speaker verification”.
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Text Robustness

Phoneme-aware speaker embedding learning

Extract phonetic bottleneck (PBN) from a pretrained ASR model and combine it with
the filterbanks2®

Speaker embedding z Speaker embedding z
Attentive pooling

RH=[ hy,hy, .. hp] /’ S
t ottt

R=[ry,13, .. ;T ] [hy hy, ...hp ] =H
CNN (2-D) £ttt t tt ¢t

PBN features NN (2-D) CNN(1-D)
P1 P2 Py tretttt -

H[ REARRR] TIFTiee

B A7 X1, X2, w0, X P1. P2, - P
X1, X9, v, X7 e LFB features PBN features
LFB features Input feature maps

Fig. 2: Explicit phonetic attention by routing LFB and PBN
. . . . o features through separate networks (LFB: log filter bank;
Fig. 1: Implicit p by ¢ g LFB and PBN: phonetic bottleneck).
PBN features at the input layer (LFB: log filter bank PBN:

7, k)

26Zhou T, Zhao Y, Li J, et al. CNN with phonetic attention for text-independent speaker-verification,”ASRU
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Text Robustness

Phoneme-aware speaker embedding learning

t
Table 1: Network configurations of PacNet
Layer 7  Linear In=1024 Out=1000
Layer 6 Pooling In=1024 Out=1024
Layer5 Convld In=2048 Out=1024
Layer 2 convld convld convld Layer4 Convld Out=512 | Out=1024 | Out=512
L J kernel=5 | In=512 In=2048 In=512
Layer3  Convld Out=512 | Out=1024 | Out=512
kernel=5 | In=512 In=2048 In=512
Layer2 Convld Out=512 | Out=1024 | Out=512
kernel=5 | In=512 In=2048 | In=512
Layer 1 Convld Out=512 | Out=1024 | Out=512
Layer 1 convld ‘ | convld ‘ l convld kernel=5 In=40 In=140 In=100
Stem Acoustic  Coupled  Phonetic
» Triplet loss instead of softmax loss
acoustic phonetic
Acoustic Stem Coupled Stem Phonetic Stem

27

27Zheng, Lei, and Suo, “Phonetically-Aware Coupled Network For Short Duration Text-Independent Speaker-Verification.”
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Text Robustness

Speech representation disentanglement

(f') The general idea: Decomposition and Reconstruction. The application

¥ is far more than speaker modeling

Applications
» Speaker representation learning
» Voice conversion

» Speech synthesis/ Voice Cloning

Shuai & Bing NCMMSC: Speaker Representation Learning 68 / 107



Speech representation disentanglement

Back to old times

Joint Factor Analysis for speaker representation learning?®

M = MYBM 4 vy 4+ Dz + Ux

» Gaussian priors assumed for factors y, z, x
» MUYBM vV D, U are estimated using EM algorithm
» V captures main speaker variability (Eigen voices)

» D captures channel variability

» U captures residual variability

28Kenny, Patrick, et al. "Joint factor analysis versus eigenchannels in speaker recognition." TASLP 2007
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Speech representation disentanglement

Neural Factor Analysis: Neglect the phoneme variations by additional alignment 2°

g FATraining
Elw | H]

! Compute ! iUpdate

1_ELBO

Masked Prediction Training

Utterance

I:INetwork Ir“_-jOperation — Forward ---» Backward O Loss

(2) Unaligned BERT Layer-6 Features (b) Aligned BERT Layer-6 Features (Cluster1) (€) Aligned BERT Layer-6 Features (Cluster2)

29Lin W W, He C H, .et, Self-supervised Neural Factor Analysis for Disentangling Utterance-level Speech Representations, IEML 2023
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Speech representation disentanglement

Decouple and Reorganization of Phonetic Information3°

Speaker loss  Phoneme loss

: combined
Embed Layer Embcdding

» Segment-level reconstruction

> Decoupling the speaker and text information
Speaker loss Phoneme loss e » For the text-independent task, we neglect the text
[ adapt information
r—S‘pcakgu1 S \ T }emg:ﬁing » For the text-dependent task, we use the combined
iﬂmbcddmg - - embedding

P> Text-adaptive task: Modify the text information in
Hooting ‘ the embedding while keeping the speaker identity.
(Change the enrollment keyword)

Input speech A Input speech B

30Yang Y*, Wang S*, Gong X, et al. Text adaptation for speaker verification with speaker-text factorized embeddings. ICASSP 2020
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Speech representation disentanglement

Decouple and Reorganization of Phonetic Information3?

Speaker Probabilities (Lgsp)
v

Phonetic Vectors A

-1
FC

+Leaky ReLU + BN

Pre-trained
Phone Ret

> Speaker Embedding

Phonetic Information |

bredciontask | (Lpp)

[
Phone Probabilities G
| Py

ConviD
‘ Gl | | + Leaky ReLU |

— :

I U -
ConvlD Self-Constraint | |8 ConviD

“(Lscr)

: A
ConvlD ConviD ConviD
+ Leaky ReLU + BN + Leaky ReLU + BN
f

. Recomncion Leaning

Input Features  (Lp;) Output Features
X X

Fig. 3. The arc re of the proposed DROP-TDNN x-vector system. DROP-TDNN consists of three
prediction, reconstruction and speaker recognition.

Segment-Level

Frame-Level

ing procedures, including phonetic information

Frame-level Reconstruction
Center frame-level speaker
representations towards its mean
Coarse-grained phoneme
categories (Vowel, semi-vowel,
affricate, ...)

31Hong Q B, Wu C H, Wang H M. Decomposition and Reorganization of Phonetic Information for Speaker Embedding Learning.

TASLP 2023
Shuai & Bing
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Speech representation disentanglement

RecXi with multiple Gaussian Inference3?

/ /\A/W Speaker
Disentangle Static and Dynamic W
components in Speech \
/\/\/\/\ Content

Supenvised Classifcation Loss
Self-supervision Soffsupervision Spoaker P’

‘Speaker Preserving pmwwfwcx:, —m
= i e
by three Gaussian { 1 et
. i b
inference layers v [ b A
ke % ) .
. Student - 4 e é Decoder
 radiional
Knowledge Distilation {21520 2r} Ly L. L) Filos Upae

e Tomporal
Fcomm] | Avwreastion

Audiary
Network

and a novel speaker
preserving self-supervision

{@1,92.5,37)

(L1, L ' Lr)

Encoder

32LiuTC, Disentangling Voice and Content with Self-Supervision for Speaker Recognition
NCMMSC: Speaker Representation Learni
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Speech representation disentanglement

Codec Approach: Speech Tokenizer

(r') Ensure the first layer representations contain content-related information,

the subsequent residual layers will naturally fill in the gaps with remaining
33

w
details—specifically, modeling the paralinguistic information.

Acoustic tokens Semantic tokens SpeechTokenizer tokens
9909000
000000

000000 00000 000000
). SoEumeam \ / m;gr \ SpeechTokenizer
| ||||||--||’||||||--||||||u|~||‘|||m~-|| ||||||-'||’|||n|--||‘|||n|'.|||||||.\,.|| |||..|..||‘|||..,..||||||..|..||||||,.|

[© content, Timbre, .. @ Content Timbre, .. |

Figure 1: Illustration of information composition of different discrete speech representations. Speech
tokens are represented as colored circles and different colors represent different information.

33Zhang X, Zhang D, Li S, et al. SpeechTokenizer: Unified Speech Tokenizer for Speech Large Language Models[J]. arXiv preprint
arXiv:2308.16692, 2023.
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Speech representation disentanglement

Codec Approach: Speech Tokenizer

Semantic Distillation to enable the disentanglement

» Continious distillation Output of
hubert’s 9-th layer/Average across all
layers
EdistuT =
% >y logo (cos (Aq’i, st))

> Discrete distillation pseudo-label
prediction
‘cd{stll =
—F D ie1 ut log (Softmax (Aqf))

Quantizer

Jojeuiwiosiq

Jepooug

80,
®
D
—
Decoder
|

LD
@

Student!

Semantic Distillation

Teacher,

module for training only
dataflow in training only

Figure 2: Illustration of SpeechTokenizer framework.

ly3anH

Assume hubert is a perfect se-
mantic encoder
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OIMES

Towards the Interpretability
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Explore model capacity via probing tasks

Analyze the information encoded

@ Assumption: If a certain attribute is encoded in the speaker representation,

the accuracy of a classifier predicting this property depends on how well it's
embedded.34 35 36 37

» Speaker-related attributes: identity, gender, and speaking rate.
> Text-related factors: spoken terms, word order, and utterance length.

» Channel-related elements include the handset ID and noise type.

3“Wang, Qian, and Yu, “What does the speaker embedding encode?”
35Belinkov and Glass, “Analyzing hidden representations in end-to-end automatic speech recognition systems”.
36Raj et al., “Probing the information encoded in x-vectors”.
37Zhao et al., “Probing Deep Speaker Embeddings for Speaker-related Tasks”.
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Explore model capacity via probing tasks

Analyze the information encoded

lllustration of the paradigm: Probing pretrained embeddings with proxy tasks3®

Dialect labels Embeddings

/Speaker ID from intermediate _____ |
4 ; 44 layers h !
Softmax Layer ’ \ : '
£ - L] : ez,
0 & o
8% s FC1_ | o |
E& —————a N
s 8 Statistical CNN4 | O !
2 8, = o e e o o emmmendassh (G |
oL Pooling [ !
- E CNN3 | X
g 3 i D
22 IploNme | g
y b pee g

2 S CNN1 !
a3 25 Do
) 1
b
! i

Input
Signal

38 Chowdhury, Durrani, and Ali, “What do end-to-end speech models learn about speaker, language and channel information? a
layer-wise and neuron-level analysis”.
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Explore model capacity via probing tasks

Analyze the information encoded

Examples of the speaker identity task and word order task3?

100.00% —o- ivector 100.00% —A— ivector

—a— dvector —e— dvector
svector ~#- svector
—— i-s-vector 87.50% —e— i-s-vector

75.00%

classification accuracy
g
classification accuracy

62.50%

50.00% @ & & A
200 300 400 500 600

vector dimension

vector dimension

Speaker identity task Word order task

3"Wang, Qian, and Yu, “What does the speaker embedding encode?”
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Measuring the importance through visualization

Class Activation Map (CAM)-GradCAM

In the context of speaker modeling, f is the speaker classifier, ¢ represents the class, 0
represents the trainable model parameters.

Yo = fe(x:;0)
For the k-th activation map A¥(e.g. k represents the k-th channel), each entry wfjc is
defined as
oy°
ke
w;; e 8A£-“j

Saliency map is defined as the linear combination

c _ kc k
k
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Measuring the importance through visualization

Visualization in Speaker Recognition

Shuai & Bing

40 41

80 E
60} B i (<
aop’ g o
: - - K
o Bi=3
g ey N S e pae - A oS
0l:l 150 200 250 300

{a) Mel-spectrogram

100 150 200 250
[h) Grad-CAM++ generated saliency map

100 150 200 250 300
((J Score-CAM generated saliency map

i

&

Example 2
[ — g "
* £
BDI 4 = ’ pul
d 153 P ~
a0l , R = =
1d I af = 3
20 A oa e E 3
i = -
b s W00 150 200 250 300

(a) Mel-spectrogram

150 200 250
(h} Grad- CAM++ generated saliency map

100 150 200 250

ﬂ(J Score-CAM generated saliency map

g 3 U!.-A

300
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OIMES

Beyond Speaker Recognition
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New paradigm to model speakers

Different tasks, different approaches

@ 1. Pretrained speaker embeddings as additional inputs
2. Joint training to learn task-specific embeddings
3. Implict speaker modeling

Shuai & Bing NCMMSC: Speaker Representation Learning 83 / 107



New paradigm to model speakers

Example: Explict speaker modeling for Zero-shot TTS42,43 44

rzifj:riknecre—- Speaker speakerl
waveform Encoder embedding
log-mel
Synthesizer pea spectrogram
grapheme or
phoneme —| Encoder | concat |+| Attention || Decoder s, |
sequence

42 Jia et al., “Transfer learning from speaker verification to multispeaker text-to-speech synthesis”.
43Casanova et al., “Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for everyone”.

44\Wu et al., “Adaspeech 4: Adaptive text to speech in zero-shot scenarios’.
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New paradigm to model speakers

Example: Implict speaker modeling for Zero-shot TTS45 46 47

Personalized
Speech

t
VALL- E Audio Codec Decoder

1
[ |

L S S S S S S S
Neural Codec Language Modeling

4 4 4 + 4 t
A S
Phoneme Conversion Audio Codec Encoder

Text Acoustic

Prompt EE Prompt

Text for synthesis 3-second enrolled recording

45Wang et al., “Neural codec language models are zero-shot text to speech synthesizers’.
46Dy et al., “UniCATS: A Unified Context-Aware Text-to-Speech Framework with Contextual VQ-Diffusion and Vocoding”.
47| e et al., “Voicebox: Text-guided multilingual universal speech generation at scale”.
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New paradigm to model speakers

Example: towards controlability and new voice generation#8 49 50 51

Semantic Speaker Semantic Speaker
g N " o :
vITs Wav

Speaker
Representation

pi

Wav

loss resample

speaker
encoder

Prompt
Encoder

speaker prompt Wav Text speaker prompt Text speaker prompt Noise Text

Prompt
Encoder

(a) training process (b) inference process (c) prompt encoder (d) zero-shot VITS

48Zhang et al., “PromptSpeaker: Speaker Generation Based on Text Descriptions’.

49Stanton et al., “Speaker generation”.

50Shimizu et al., “PromptTTS++: Controlling Speaker Identity in Prompt-Based Text-to-Speech Using Natural Language
Descriptions”.

51Bilinski et al., “Creating new voices using normalizing flows".
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New paradigm to model speakers

Example: Explict speaker modeling for zero-shot voice conversion

525354

Predicted
PostNet — Target Mel

Output Feature

SI manipulator
1 SI Adder
PreNet2 t
= Mel Linear 7
Ny - — peaker \
Mid Embedding concat " Encoder Add & Norm
Transformer ‘
Mel embeddis
Speaker S Enrollment Decoder ConvlD
Encoder Mel Positional
. Encodi Add & Norm
ST Remover SI man;pulator ncoding N x

PreNetl Transformer ‘ ‘ Multi-Head

) Encoder Attention
COI’:CB( ‘—| Positi |

S1tI0N:
Content Speaker E: co ;1 na \ \
Encoder Encoder ¢ & S/
t t
Input Feature

Source Speech Source Mel
(a) Proposed System (b) SI Manipulator (c) Encoder and decoder architecture

52Zhamg et al., “SIG-VC: A Speaker Information Guided Zero-Shot Voice Conversion System for Both Human Beings and Machines'

53Chen and Duan, “ControlVC: Zero-Shot Voice Conversion with Time-Varying Controls on Pitch and Rhythm".
54Hussain et al., “ACE-VC: Adaptive and Controllable Voice Conversion Using Explicitly Disentangled Self-Supervised Speech

Representations’.
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New paradigm to model speakers

Example: Implict speaker modeling for zero-shot voice conversion®® %6 57

Synthesis

Filter i
Generator __§

~ Perturb ~ / Analysis \

LPS
e ]

w2v 5
> st spk _}
»  Energy LP:5 E

: P.5 | I Source |
> Yinarz
Lo e ] " (]

\. U\l v

55 Choi et al., “Neural analysis and synthesis: Reconstructing speech from self-supervised representations”.
56\Wu and Lee, “One-shot voice conversion by vector quantization”.

57Wu, Chen, and Lee, “Vqvc+: One-shot voice conversion by vector quantization and u-net architecture”.
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New paradigm to model speakers

585960

Example: Explict speaker modeling for target speaker extraction

= 889 e

—\C
@i& D) T Embedding Backpropagation
72 )) Classifier
<3 é, UBM Adaptation
NN-Based Jointly Learned
— T 1T Speech
a l—v Extraction
Module
UBM Embedding
Learning Feature Extractor NN Auxiliary NN I
Extraction

Rl

O O Oohe

Enrollment Enroliment Enroliment

(@) (b) (©

58Zmolikova et al., “Neural Target Speech Extraction: An overview”.
59Delcroix et al., “Single channel target speaker extraction and recognition with speaker beam’.
60Ge et al., “Spex+: A complete time domain speaker extraction network’.
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New paradigm to model speakers

Example: Implict speaker modeling for target speaker extraction®!,62

Reference
Wave Sl'i)’ee;l;er
Embedding
Speaker
EXtacton Embedding
(&) i
—»[ Encoder Wity M Decoder '—»S‘
Mixed Wave Epnix Network
Reference
Wave S
®) Encoder ng M Decoder S
X Network
Mixed Wave

‘mix|

Figure 1: (A) is the diagram of a typical time-domain target
speaker extraction method. (B) is the diagram of our proposed
method. ® is an operation for element-wise product.

6:lZeng et al., “SEF-Net: Speaker Embedding Free Target Spekaer Extraction Network’.
62Yang et al., “Target Speaker Extraction with Ultra-Short Reference Speech by VE-VE Framework’
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Practice: Speaker Representation Learning with Wespeaker
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Wespeaker

Introduction

Wespeaker is a speaker embedding learning toolkit designed for research and
production purposes, it characterized by

» Lightwight codebase

» SOTA perfermance

» Discriminative and SSL based paradigms
» Runtime/Deployment support

» Adopted by research groups from both companies and academic institutions:

Tsinghua University

The Chinese University of Hong Kong (Shenzhen)
Tencent

Shanghai Jiao Tong University
Meituan

University of Science and Technology of China
China Telecom
National University of Singapore

v vV VvV VY

NVIDIA
Institute for Infocomm Research (I2R)

vV vV vV vV vV VY

Brno University of Technology.
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Wespeaker

Build your own ASV system

» Data Preparation
» Data Downloading
» Formating
» Transformation
> Model Training
» On-the-fly Data Augmentation
» Model Selection
» Large-margin Fine-tuning
» Backend Scoring
»> As-norm

> PLDA / A-PLDA
» Score Calibration (coming soon)
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Wespeaker

Unified 10 for data management

‘ Unified 10 System (U10)

==

Large Data Management
(Shard)

I

Local files l l Local files

Local files Cloud(S3/0SS/HDFS/...)

Veals scp wav. scp
utts pk ((Zspk

Lwav idl
2wav id2
3wav id3

Figure: Unified I/O system

Shuai & Bing

Unified 1/0O system
» Also adopted in wenet ASR toolkit
» Inspired by webdataset and tfrecord
Idea

» Raw: load wav and label files from disk (small
data)
» Shard:

» Pack a set of small files into a bigger shard
» Read and decompress the shard files on-the-fly

» Feat: Compatible with kaldi-style feature files

> Effectively loading large-scale datasets
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Wespeaker

Data Preparation

Step 1: Download and prepare metadata

if [ ${stage} —le 1 ] && [ ${stop_stage} —ge 1 |;

then
echo "Prepare datasets ..."

./local /prepare_data.sh —stage 2 —stop_stage 4 —data ${data}
fi

Step 2: Covert train and test data

if [ ${stage} —le 2 ] && [ ${stop_stage} —ge 2 ]; then

echo "Covert train and test data to ${data typel}..."
for dset in vox2 dev voxl; do -
if [ $data_type == "shard" ]; then
python tools/make_shard_list.py —num_utts_per_shard 1000 \
—num_threads 16 \
—prefix shards \
—shuffle \

${data}/Sdset/wav.scp ${data}/$dset/utt2spk \

${data}/Sdset/shards ${data}/$dset/shard. list
else

python tools/make raw list.py ${data}/S$dset/wav.scp \
${data}/Sdset/utt2spk ${data}/$dset/raw. list

Shuai & Bing
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Wespeaker

Model Training

Step3: Start training

Dataset Config:

Data Augmentation:

if [ ${stage} —le 3 ] && [ ${stop_stage} —ge 3

]; then
echo "Start training ..."
num_gpus=$(echo $gpus | awk —F ', "{print NF
)
torchrun —standalone —nnodes=1 —

nproc_per node=$num _gpus \
wespeaker/bin/train.py —config S$config \

—exp _dir ${exp dir} \

—gpus S$gpus -

—num_avg ${num avg} \

—data type "${data typel}"

—train_data ${data}/vox2 dev/${data type

}.Tist |\ - -

—train_label ${data}/vox2 dev/utt2spk \

—reverb data ${data}/rirs/Imdb \

—noise data ${data}/musan/Imdb \

${check_point:+——checkpoint $checkpoint}

fi

dataset args:
speed perturb: True
num frms: 200
aug prob: 0.6
# prob to add reverb
& noise aug per
sample
fbank args:
num_mel bins: 80
frame shift: 10
frame length: 25
dither: 1.0
spec aug: False
spec _aug args:
num t mask: 1
num_f mask: 1
max_t: 10
max_f: 8
prob: 0.6

# add noise

dataset = Processor(
dataset, processor
.add_reverb_noise,
reverb data,
noise data,
resamipleirate,

aug_prob)
# speed perturb
dataset = Processor(

dataset, processor
.speed perturb,
len (spk2id dict))

# specaug
dataset = Processor(
dataset, processor

.spec_aug, xx*
configs [’
spec_aug_args'])
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Wespeaker

SOTA Model Support

Model Arch: Pooling Methods: Loss Function: Model Config:
» ResNet Series » TSTP » add margin model: ResNet34
- # ECAPA, CAMPPIlus,
» TDNN > ASTP » arc_margin AU
» ECAPA-TDNN > MQMHASTP > sphere " fea e 50
» RepVGG » sphereface2 ZTZT?n#EdTLE;Fr;fE)ZSTTsTP
> CAM++ > intertopk two_omb. layer: False
» subcenter P et Tawe

arc margin"
# add m;rgin,

arc margin ,

sphere ,

sphereface2 ,

softmax ,

aam intertopk
scale: 32.0
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Wespeaker

Back-end Support

Scoring:

if [ ${stage} —le 5 ] && [ ${stop_stage} —ge 5
; then

echo "Score "

BaCk_end Support: Ioil{:;:rel-s—hst\op—stage 2\
. —data ${data} \
| 4 COS|ne —exp_dir $exp dir \
—trials "Strials"
» PLDA fi
> Adapt_PLDA if [ ]5;{5:55:} —le 6 ] && [ ${stop stage} —ge 6
echo "Score norm ..."

Others: local/score _norm.sh \

—stage 1 —stop—stage 3 \
—score_norm_method $score norm method \
—cohort_set vox2 dev \ -

. . —top _n S$top n
» QMF based Calibration data ${data} §
—exp _dir $exp dir \
—trials "Strials"

» Score normalization

fi
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Wespeaker

Deployment and product-oriented setups

Onnx Inference Demo

To use the pretrained model in pytorch format, please directly refer to the run.sh in corresponding recipe.
As for extracting speaker embeddings from the onnx model, the following is a toy example.
# Download the pretrained model in onnx format and save it as onnx_path

# wav_path is the path to your wave file (16k)
Python wespeaker/bin/infer_onnx.py —onnx_path Sonnx_path ~-wav_path $wav_path

You can easily adapt infer_onnx.py to your application, a speaker diarization example can be found in the voxconverse recipe

Model List
Datasets  Languages Checkpoint (pt) Runtime Model (onnx)
VoxCeleb  EN ResNet3d /ResNet3d LM ResNet34 | ResNet3d_LM
VoxCeleb  EN ResNet152_LM ResNet152_LM
VoxCeleb  EN ResNet221 LM ResNet221 LM
VoxCeleb  EN ResNet293_LM ResNet293_ LM
VoxCeleb  EN CAM#+/ CAM++_ LM CAM#+/ CAM++_ LM
CNCeleb  CN ResNet34 /ResNet3d LM ResNet3d | ResNet3d_LM

Figure: Pretrained Model List

Export Jit:

if [ ${stage} —le 7 ] && [ ${stop_stage} —ge 7
]; then
echo "Export the best model ..
python wespeaker/bin/export jit.py \
—config $exp dir/config.yaml \
—~checkpoint $Sexp dir/models/avg model.pt \
—output_file $exp dir/models/final.zip

fi

Export Onnx:

exp=exp # Change it to your experiment dir

onnx dir=onnx

python wespeaker/bin/export onnx.py \
—config Sexp/config.yaml \
—checkpoint $exp/avg model.pt \
—output__model $onnx__dir/fina| .onnx
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Wespeaker

Deployment and product-oriented setups

Command-line usage:

wespeaker —task embedding —audio_file audio.wav —
output_file embedding.txt —g 0
wespeaker —task embedding kaldi —wav scp wav.scp —
e e unning output file /path/to/embedding —g 0
3 L. wespeaker —task similarity —audio file audio.wav —
Speaker Verification in WeSpeaker audio file2 audio2.wav —g 0

pe ! voice ! audio length be gr

Python programming usage:

* Record from microphone

import wespeaker

* Record from microphone

model = wespeaker.load _model('chinese’)
o o # set gpu to enable the cuda inference, number < 0 means
“using CPU
G Sl model.set gpu(0)
embedding = model.extract _embedding('audio.wav')
. ) utt names, embeddings = model.extract embedding list( '
Figure: Wespeaker Demo Page ~wav.scp ) - -
similarity = model.compute similarity('audiol.wav’', '’
audio2.wav') -
diar result = model.diarize('audio.wav')
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Wespeaker

Competitive performance

Table: Supervised results achieved using different architectures on the VoxCeleb dataset, “dev"”
of part 2 is used as the training set

voxcelebl_O voxcelebl _E voxcelebl H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

IDLab VoxSRC 2020°  ECAPA-TDNN 0.870 0.107 1.120 0.132 2.120 0.210

Literature/Toolkits Architecture

BUT VoxSRC 20195 ResNet34 1310 0154 1380 0163 2500  0.233

ECAPA-TDNN  0.856 - - - B B
1

AsvSubtools Conformer  0.792 - - - - -
TDNN 3.23 - - - - -
SpeechBrain? ECAPA-TDNN 0.9 - - - - -
ECAPA-TDNN * 1.30 - 1.98 - 3.62 -
TDNN 1.96 - - - - -
Nemo® ECAPA-TDNN 0.92 - - - - -
titanet _large 0.66 - - - - -

TDNN 1500 0166 1641 0170 2726  0.248

ECAPA-TDNN 0728 0099 0929 0100 1721  0.169

CAM++ 0654 0087 0805 0092 1576  0.164

RepVGG 0750 0083 0846 0090 1495 0141

We e ResNet34 0.723 0.069 0.867 0.097 1532 0.146

espeaker ResNet50 0803 0061 0887 0092 1519 0136

ResNet101 0.542 0.052 0.758 0.079 1.398 0.128

ResNet152 0495 0033  0.685 0069 1205  0.105

ResNet221 0505 0045 0676 0067 1213 0111

ResNet293 0.447 0.043 0.657 0.066 1.183 0.111

63Desp|anques, Thienpondt, and Demuynck, “Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based
speaker verification”.

64 Zeinali et al., “But system description to voxceleb speaker recognition challenge 2019".
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Wespeaker
Results on CNCeleb

Table: Results on the CNCeleb evaluation set

Toolkits Architecture  EER(%) minDCF

ASVSubtools ResNet34 9.141 0.463
TDNN 8.960 0.446

Wespeake ECAPA-TDNN  7.395 0.372
peaker CAM++ 7.052  0.368
ResNet34 6.492 0.354

ResNet221 5.655 0.330

Shuai & Bing NCMMSC: Speaker Representation Learning 102 / 107



Wespeaker

Results on VoxCeleb

Table: Performance (EER%) of SSL-based systems on the VoxCeleb evaluation set

Toolkits ~ Paradigm Architecture VoxCelebl O VoxCelebl E VoxCelebl H

3Dspeaker RDINO  ECAPA-TDNN (C1024) 3.16 - -
SimCLR ECAPA-TDNN 8.523 9.417 14.907
MoCo ECAPA-TDNN 8.709 9.287 14.756

wespeaker g ResNet34 3.170 3.324 5.821
DINO ECAPA-TDNN (C512) 3.016 3.093 5.538
DINO ECAPA-TDNN (C1024) 2.627 2.665 4.644
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Wespeaker

A comprehensive example of using Wespeaker®® 66

—
CEloss CELoss

gradient [ softmax centering softmax .
: gradient | AAM-Softmax

S

P

I ild
Unlabeled Data

|

Initialization

4 stdent

Data
Augmentation

|

ered
Unlabeled Data

Stage 1: Confidence based data filtering Stage 2: DINO SSL training Stage 3: Supervised finetuning

Step 1: Clustering-based speaker diarization system, filter out low-quality segments.
Step 2: Train a DINO system on the filtered data
Step 3: Fintuning the pretrained DINO system in a supervised setup.

65\Wang et al., “Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition”.
66y et al., “AutoPrep: An Automatic Preprocessing Framework for In-the-Wild Speech Data”.
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Wespeaker

Filter-Pretrain-Finetune pipeline

Table: Comparison of performance on CNCeleb-Eval with other pretrain-finetune methods.

System ‘ Pretraining Configurations ‘ Finetuning Configurations ‘ EER(%) MinDCF
‘ Data Model Role ‘ Data Model ‘

o7 VoxCeleb2 ECAPA-TDNN Init CNCeleb1 ECAPA-TDNN 10.65 -

68 VoxCeleb2 ECAPA-TDNN Init CNCelebl ECAPA-TDNN 8.710 0.422

69 VoxCeleb2 ECAPA-TDNN Init CNCelebl ECAPA-TDNN 10.03 0.539

o CNCeleb1 HuBERT (94.6M)  Frontend CNCeleb1 HuBERT + ECAPA-TDNN | 10.86 -

7 CNCeleb-Train ~ HuBERT (94.6M)  Frontend CNCeleb-Train HuBERT + ECAPA-TDNN | 8.890 -

7 CNCeleb-Train  Conformer (172.2M)  Frontend CNCeleb-Train Conformer + MHFA 7.730 0.406
ok Mix 94k hr WavlLM (94.7M) Frontend | VoxCeleb2 + CNCeleb-Train ~ WavLM+MAM-+MHFA 6.890 0.378
72%% | WenetSpeech  Conformer (18.8M) Init CNCeleb-Train Conformer 7.420 0.443
Ours | WenetSpeech ECAPA-TDNN Init CNCelebl ECAPA-TDNN 7.373 0.383
Ours + filtering ECAPA-TDNN Init CNCelebl ECAPA-TDNN 7.339 0.377
Ours WenetSpeech ECAPA-TDNN Init CNCeleb-Train ECAPA-TDNN 6.738 0.338
Ours + filtering ECAPA-TDNN Init CNCeleb-Train ECAPA-TDNN 6.474 0.331

%7Heo et al., “Self-supervised curriculum learning for speaker verification”.
68Kang et al., “Augmentation adversarial training for self-supervised speaker representation learning”.
%9Han et al., “Improving dino-based self-supervised speaker verification with progressive cluster-aware training’.
7°Peng et al., “Improving speaker verification with self-pretrained transformer models”.
71Peng et al., “Parameter-efficient transfer learning of pre-trained Transformer models for speaker verification using adapters'.
72| jao et al., “Towards a unified conformer structure: from asr to asv task’.
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Conclusions and Takeaway

» Speaker modeling is not all about speaker recognition.
» Speaker modeling is more than embedding learning.
» Customize the speaker modeling approach for the specific task.

» Try wespeaker! https://github.com/wenet-e2e/wespeaker
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https://github.com/wenet-e2e/wespeaker

Email: wsstriving@gmail.com
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